A convergence theory for the $hp$-FEM applied to a variety of constant-coefficient Helmholtz problems was pioneered in the papers [Melenk-Sauter, 2010], [Melenk-Sauter, 2011], [Esterhazy-Melenk, 2012], [Melenk-Parsania-Sauter, 2013]. This theory shows that, if the solution operator is bounded polynomially in the wavenumber $k$, then the Galerkin method is quasioptimal provided that $hk/p \leq C_1$ and $p\geq C_2 \log k$, where $C_1$ is sufficiently small, $C_2$ is sufficiently large, and both are independent of $k,h,$ and $p$. The significance of this result is that if $hk/p= C_1$ and $p=C_2\log k$, then quasioptimality is achieved with the total number of degrees of freedom proportional to $k^d$; i.e., the $hp$-FEM does not suffer from the pollution effect. This paper proves the analogous quasioptimality result for the heterogeneous (i.e. variable-coefficient) Helmholtz equation, posed in $\mathbb{R}^d$, $d=2,3$, with the Sommerfeld radiation condition at infinity, and $C^\infty$ coefficients. We also prove a bound on the relative error of the Galerkin solution in the particular case of the plane-wave scattering problem. These are the first ever results on the wavenumber-explicit convergence of the $hp$-FEM for the Helmholtz equation with variable coefficients.
翻译:$hp$- FEM 的趋同理论适用于各种恒定和高效的 Helmholtz 问题。 该理论表明, 如果解决方案操作员在波数中以多元方式捆绑, 那么Galerkin 方法是准最佳的, 条件是$hk/p\leq C_1美元和$pgeq C_2\log k$, 其中, $C_ 1美元足够小, $C_ Salen, [Esterhazy- Melenik, 2012], [Esterhazy- Parsania- Sauter, 2013] 。 [Mernick- Parmania- Saut, [2013] 。 这个理论表明, 如果解决方案操作员在波数中以多元方式捆绑在一起, 那么Galk/p=cal_clorg 美元, 那么当量与 $k_ 相对价格相对价格相对的直径直径直径直值, i_\\ glogyal- falal lexn lexn mailate, mailate the fal- maxn maxal- palal resm resm resm resm resm le) yal- fal- exlate.