We propose a deterministic Kaczmarz algorithm for solving linear systems $A\x=\b$. Different from previous Kaczmarz algorithms, we use reflections in each step of the iteration. This generates a series of points distributed with patterns on a sphere centered at a solution. Firstly, we prove that taking the average of $O(\eta/\epsilon)$ points leads to an effective approximation of the solution up to relative error $\epsilon$, where $\eta$ is a parameter depending on $A$ and can be bounded above by the square of the condition number. We also show how to select these points efficiently. From the numerical tests, our Kaczmarz algorithm usually converges more quickly than the (block) randomized Kaczmarz algorithms. Secondly, when the linear system is consistent, the Kaczmarz algorithm returns the solution that has the minimal distance to the initial vector. This gives a method to solve the least-norm problem. Finally, we prove that our Kaczmarz algorithm indeed solves the linear system $A^TW^{-1}A \x = A^TW^{-1} \b$, where $W$ is the low-triangular matrix such that $W+W^T=2AA^T$. The relationship between this linear system and the original one is studied.


翻译:我们为解决线性系统建议了一个确定性的卡兹马兹算法 $A\x ⁇ b$。 不同于先前的卡兹马兹算法, 我们在迭代的每个步骤中都使用反射。 这产生了一系列点分布在以解决方案为中心的一个球体上的图案。 首先, 我们证明, 以美元( eta/\\ epsilon) 点的平均值来将解决方案有效接近于相对的错误 $\ epslon$。 美元( eta$) 是一个取决于$A 的参数, 并且可以被条件编号的正方形所约束。 我们还展示了如何有效地选择这些点 。 从数字测试中, 我们的卡兹马兹算算算法通常比( block) 随机化的卡兹马兹运算法更快地集中。 其次, 如果线性系统一致, 卡兹马兹算法返回了与初始矢量最小距离的解决方案。 这提供了解决原始问题的方法 。 最后, 我们证明我们的卡兹马兹算算算确实解决了直线性系统$$$A_A_W_1x_____________________________________________

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
77+阅读 · 2021年1月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
最新《图理论》笔记书,98页pdf
专知
51+阅读 · 2020年12月27日
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
最新《图理论》笔记书,98页pdf
专知
51+阅读 · 2020年12月27日
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员