Our objective is to stabilise and accelerate the time-domain boundary element method (TDBEM) for the three-dimensional wave equation. To overcome the potential time instability, we considered using the Burton--Miller-type boundary integral equation (BMBIE) instead of the ordinary boundary integral equation (OBIE), which consists of the single- and double-layer potentials. In addition, we introduced a smooth temporal basis, i.e. the B-spline temporal basis of order $d$, whereas $d=1$ was used together with the OBIE in a previous study [Takahashi 2014]. Corresponding to these new techniques, we generalised the interpolation-based fast multipole method that was developed in \cite{takahashi2014}. In particular, we constructed the multipole-to-local formula (M2L) so that even for $d\ge 2$ we can maintain the computational complexity of the entire algorithm, i.e. $O(N_{\rm s}^{1+\delta} N_{\rm t})$, where $N_{\rm s}$ and $N_{\rm t}$ denote the number of boundary elements and the number of time steps, respectively, and $\delta$ is theoretically estimated as $1/3$ or $1/2$. The numerical examples indicated that the BMBIE is indispensable for solving the homogeneous Dirichlet problem, but the order $d$ cannot exceed 1 owing to the doubtful cancellation of significant digits when calculating the corresponding layer potentials. In regard to the homogeneous Neumann problem, the previous TDBEM based on the OBIE with $d=1$ can be unstable, whereas it was found that the BMBIE with $d=2$ can be stable and accurate. The present study will enhance the usefulness of the TDBEM for 3D scalar wave problems.


翻译:我们的目标是稳定并加速三维波形方程式的时空界元素方法(TDBEM) 。 为了克服潜在的时间不稳定性, 我们考虑使用伯顿- 米勒- 边界型整体方程式( BBBIE ) 而不是普通的边界整体方程式( OBIE ), 包括单层和双层潜能。 此外, 我们引入了一个平滑的时间基础, 即, 以美元为定序的B- spline时间基基数( TDBEM ), 而在前一项研究中, 美元=1 美元与 OBIE 一起使用OBIE 。 与这些新的技术对应, 我们推广了基于内推法的快速多极方方方方方方方方程式( BBBBBBBBBB), 以美元和美元 美元为内值的直数, 以美元为内值的内值 IMBMBN 和 美元为内值的内值的内值, 以内值表示的内值的内值的内值的内值的内值的内值的内值的内值。

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年11月21日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
解密高光谱
无人机
9+阅读 · 2018年5月30日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月11日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
6+阅读 · 2019年11月21日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
解密高光谱
无人机
9+阅读 · 2018年5月30日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员