In this work we undertake a thorough study of the non-asymptotic properties of the vanilla generative adversarial networks (GANs). We derive theoretical guarantees for the density estimation with GANs under a proper choice of the deep neural networks classes representing generators and discriminators. In particular, we prove that the resulting estimate converges to the true density $\mathsf{p}^*$ in terms of Jensen-Shannon (JS) divergence at the rate $(\log{n}/n)^{2\beta/(2\beta+d)}$ where $n$ is the sample size and $\beta$ determines the smoothness of $\mathsf{p}^*$. To the best of our knowledge, this is the first result in the literature on density estimation using vanilla GANs with JS convergence rates faster than $n^{-1/2}$ in the regime $\beta > d/2$. Moreover, we show that the obtained rate is minimax optimal (up to logarithmic factors) for the considered class of densities.
翻译:在这项工作中,我们彻底研究了香草基因对抗性网络(GANs)的非物质特性;我们根据代表发电机和受歧视者的深神经网络类别的适当选择,从理论上保证对GANs的密度估计;特别是,我们证明,由此得出的估计值与Jensen-Shannon(JES)的真正密度差异相吻合,其值为$(log{n}/n)2\beta/(2\beta+d)}美元,其中,美元为样本规模,美元为Beta美元,确定美元是否平稳。据我们所知,这是使用Vanilla GANs和JS的密度估计文献中的第一个结果,其浓度比JS的浓度率快于$/n ⁇ -1/2美元。此外,我们表明,在所考虑的密度类别中,所获得的比率是微量最佳的(指对正数系数)。