We study a class of $K$-encoder hypothesis testing against conditional independence problems. Under the criterion that stipulates minimization of the Type II error exponent subject to a (constant) upper bound $\epsilon$ on the Type I error rate, we characterize the set of encoding rates and exponent for both discrete memoryless and memoryless vector Gaussian settings. For the DM setting, we provide a converse proof and show that it is achieved using the Quantize-Bin-Test scheme of Rahman and Wagner. For the memoryless vector Gaussian setting, we develop a tight outer bound by means of a technique that relies on the de Bruijn identity and the properties of Fisher information. In particular, the result shows that for memoryless vector Gaussian sources the rate-exponent region is exhausted using the Quantize-Bin-Test scheme with Gaussian test channels; and there is no loss in performance caused by restricting the sensors' encoders not to employ time sharing. Furthermore, we also study a variant of the problem in which the source, not necessarily Gaussian, has finite differential entropy and the sensors' observations noises under the null hypothesis are Gaussian. For this model, our main result is an upper bound on the exponent-rate function. The bound is shown to mirror a corresponding explicit lower bound, except that the lower bound involves the source power (variance) whereas the upper bound has the source entropy power. Part of the utility of the established bound is for investigating asymptotic exponent/rates and losses incurred by distributed detection as function of the number of sensors.


翻译:我们针对有条件的独立问题研究一个等级为 $K$-encoder 的假设测试。 根据规定将二型错误在类型I 错误率上最小化的标准, 我们为离散的无记忆和无记忆矢量高斯设置设定的编码率和提示率组特征。 对于DM 设置, 我们提供一个反向证明, 并显示它是使用 Rahman 和 Wagner 的 Quartize- Bin- Test 计划实现的。 对于无记忆矢量高斯 设置, 我们开发了一个紧紧的外框框, 使用一种取决于 de Bruijn 身份和 Fishercher 信息属性的( 默认) 约束技术手段。 特别是, 结果显示, 对于无记忆矢量矢量的矢量源来说, 率- Bin- 测试计划已经用高斯测试频道完成; 使用时间共享来限制传感器的解码/ 并不造成性能损失。 此外, 我们还研究一个内置矢量矢量矢量值的变量, 在底端的源中, 上, 测值的上, 值的值值值值值值值值值值值值值值值值值值值值值值值值值值是比值值值值值值前值值值值的值值值值值值值值值值值值值值值值值值值值值值值值值值值值。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年7月27日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
111+阅读 · 2020年11月12日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Conditional Batch Normalization 详解
极市平台
4+阅读 · 2019年4月12日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2021年7月27日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
111+阅读 · 2020年11月12日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Conditional Batch Normalization 详解
极市平台
4+阅读 · 2019年4月12日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员