Chance constrained optimization problems allow to model problems where constraints involving stochastic components should only be violated with a small probability. Evolutionary algorithms have recently been applied to this scenario and shown to achieve high quality results. With this paper, we contribute to the theoretical understanding of evolutionary algorithms for chance constrained optimization. We study the scenario of stochastic components that are independent and Normally distributed. By generalizing results for the class of linear functions to the sum of transformed linear functions, we show that the (1+1)~EA can optimize the chance constrained setting without additional constraints in time O(n log n). However, we show that imposing an additional uniform constraint already leads to local optima for very restricted scenarios and an exponential optimization time for the (1+1)~EA. We therefore propose a multi-objective formulation of the problem which trades off the expected cost and its variance. We show that multi-objective evolutionary algorithms are highly effective when using this formulation and obtain a set of solutions that contains an optimal solution for any possible confidence level imposed on the constraint. Furthermore, we show that this approach can also be used to compute a set of optimal solutions for the chance constrained minimum spanning tree problem.


翻译:机会限制优化问题允许模型问题, 涉及随机部件的限制只应该以很小的概率被违反。 进化算法最近已经应用到这一假设中, 并显示可以实现高质量的结果。 有了这份文件, 我们为对进化算法的理论理解作出了贡献, 以便有机会优化。 我们研究了独立和通常分布的随机分析元件的设想。 通过将线性功能类别的结果概括到已转变的线性函数的总和, 我们显示(1+1)~ EA可以优化机会限制设置,而没有时间(nlog n)的额外限制。 然而, 我们表明, 施加额外的统一算法已经导致对非常有限的情景的局部选择, 并且为(1+1)~ EA 的指数优化时间。 因此, 我们提出一个多目标的公式, 以抵消预期的成本和差异。 我们表明, 多目标的进化算法在使用这一公式时非常有效, 并获得一套解决方案, 包含对制约树的任何可能的信任程度的最佳解决方案。 此外, 我们表明, 这种方法还可以用来为受限的最低树面积问题计算一套最佳解决方案。

1
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员