The Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) is a popular algorithm for solving Multi-Objective Problems (MOPs). The main component of MOEA/D is to decompose a MOP into easier sub-problems using a set of weight vectors. The choice of the number of weight vectors significantly impacts the performance of MOEA/D. However, the right choice for this number varies, given different MOPs and search stages. Here we adaptively change the number of vectors by removing unnecessary vectors and adding new ones in empty areas of the objective space. Our MOEA/D variant uses the Consolidation Ratio to decide when to change the number of vectors, and then it decides where to add or remove these weighted vectors. We investigate the effects of this adaptive MOEA/D against MOEA/D with a poorly chosen set of vectors, a MOEA/D with fine-tuned vectors and MOEA/D-AWA on the DTLZ and ZDT benchmark functions. We analyse the algorithms in terms of hypervolume, IGD and entropy performance. Our results show that the proposed method is equivalent to MOEA/D with fine-tuned vectors and superior to MOEA/D with poorly defined vectors. Thus, our adaptive mechanism mitigates problems related to the choice of the number of weight vectors in MOEA/D, increasing the final performance of MOEA/D by filling empty areas of the objective space while avoiding premature stagnation of the search progress.


翻译:以分解(MOEA/D)为基础的多目标进化演算法基于分解(MOEA/D)是解决多目标问题的流行算法。MOEA/D的主要组成部分是使用一组重量矢量将MOEA/D分解成较容易的子问题。选择加权矢量的数量对MOEA/D的性能有重大影响。然而,鉴于不同的期中和搜索阶段,这一数目的正确选择各不相同。我们在这里通过删除不必要的矢量和在目标空间的空空区添加新的矢量来适应改变矢量的数量。我们的MOEA/D变异版使用合并比法来决定何时改变矢量的数量,然后决定在何处增加或删除这些加权矢量。我们调查了这一调整的MOEA/D对MOEA/D的性能影响,选择了一套选用的矢量、一个经过微调病媒的MOEA/AWA,以及ZD基准函数。我们用超量量量、IMD/MO的性能分析算法对REA的等值,而我们提出的超量、IMEA的上调的矢量和MOEA的矢量性能性能性能的计算,显示了我们为我们的超量计算。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
在 Arduino 上使用机器学习
TensorFlow
6+阅读 · 2020年3月31日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
数据分析师应该知道的16种回归技术:岭回归
数萃大数据
15+阅读 · 2018年8月11日
学好机器学习,这里有你想要的一切
伯乐在线
3+阅读 · 2018年6月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
0+阅读 · 2021年11月1日
VIP会员
Top
微信扫码咨询专知VIP会员