In this work, we establish risk bounds for the Empirical Risk Minimization (ERM) with both dependent and heavy-tailed data-generating processes. We do so by extending the seminal works of Mendelson [Men15, Men18] on the analysis of ERM with heavy-tailed but independent and identically distributed observations, to the strictly stationary exponentially $\beta$-mixing case. Our analysis is based on explicitly controlling the multiplier process arising from the interaction between the noise and the function evaluations on inputs. It allows for the interaction to be even polynomially heavy-tailed, which covers a significantly large class of heavy-tailed models beyond what is analyzed in the learning theory literature. We illustrate our results by deriving rates of convergence for the high-dimensional linear regression problem with dependent and heavy-tailed data.


翻译:在这项工作中,我们为 " 经验风险最小化(ERM) " 设定了风险界限,既有依赖性的,也有繁琐的数据生成程序。我们这样做的方式是,将Mendelson[Men15, Men18]在分析机构风险管理的开创性作品中,用大量详细但独立和同样分布的观测,扩展至严格静止的指数性指数($\beta$-mixing)案例。我们的分析基于明确控制噪音和投入功能评估相互作用产生的乘数过程。我们的分析使得互动甚至能够实现多式的重成型,它涵盖大量重成型模型,超出了学习理论文献中的分析范围。我们通过得出与依赖性和重成型数据的高维线回归问题的趋同率来展示我们的成果。

0
下载
关闭预览

相关内容

经验风险最小化(ERM)是统计学习理论中的一个原则,它定义了一系列学习算法,并用于给出其性能的理论界限。经验风险最小化的策略认为,经验风险最小的模型是最优的模型。根据这一策略,按照经验风险最小化求最优模型就是求解最优化问题。
专知会员服务
15+阅读 · 2021年5月21日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
4+阅读 · 2021年7月1日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员