In general-sum games, the interaction of self-interested learning agents commonly leads to socially worse outcomes, such as defect-defect in the iterated stag hunt (ISH). Previous works address this challenge by sharing rewards or shaping their opponents' learning process, which require too strong assumptions. In this paper, we demonstrate that agents trained to optimize expected returns are more likely to choose a safe action that leads to guaranteed but lower rewards. However, there typically exists a risky action that leads to higher rewards in the long run only if agents cooperate, e.g., cooperate-cooperate in ISH. To overcome this, we propose using action value distribution to characterize the decision's risk and corresponding potential payoffs. Specifically, we present Adaptable Risk-Sensitive Policy (ARSP). ARSP learns the distributions over agent's return and estimates a dynamic risk-seeking bonus to discover risky coordination strategies. Furthermore, to avoid overfitting training opponents, ARSP learns an auxiliary opponent modeling task to infer opponents' types and dynamically alter corresponding strategies during execution. Empirically, agents trained via ARSP can achieve stable coordination during training without accessing opponent's rewards or learning process, and can adapt to non-cooperative opponents during execution. To the best of our knowledge, it is the first method to learn coordination strategies between agents both in iterated prisoner's dilemma (IPD) and iterated stag hunt (ISH) without shaping opponents or rewards, and can adapt to opponents with distinct strategies during execution. Furthermore, we show that ARSP can be scaled to high-dimensional settings.


翻译:在一般游戏中,自我感兴趣的学习代理人的相互作用通常会导致社会上更差的结果,例如迭生鹿角狩猎(ISH)中的缺陷缺陷。以前的作品通过分享奖励或塑造对手的学习过程来应对这一挑战,而这要求的假设过于强烈。在本文中,我们表明,受过优化预期回报培训的代理人更可能选择安全行动,导致有保障但报酬较低。然而,通常存在一种风险行动,只有在代理人合作,例如合作合作开展ISH时,才能长期导致更高的回报。为了克服这一点,我们建议使用行动价值分配来说明决定的风险和相应的潜在回报。具体地说,我们提出了可调适风险敏感政策(ARSP)。在本文中,经过培训的代理人了解有关代理人的返回,并估计出一个动态风险搜索奖金,以发现危险的协调战略。此外,为了避免培训对手过量,ARSP学习辅助性对手的任务可以推导出反对者的类型,并在执行期间动态地调整相应的战略。为了克服这一点,通过ARSP培训的代理人可以在培训过程中实现稳定的协调,而不是学习对手的学习方法。</s>

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
65+阅读 · 2021年6月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员