We study how to design edge server placement and server scheduling policies under workload uncertainty for 5G networks. We introduce a new metric called resource pooling factor to handle unexpected workload bursts. Maximizing this metric offers a strong enhancement on top of robust optimization against workload uncertainty. Using both real traces and synthetic traces, we show that the proposed server placement and server scheduling policies not only demonstrate better robustness against workload uncertainty than existing approaches, but also significantly reduce the cost of service providers. Specifically, in order to achieve close-to-zero workload rejection rate, the proposed server placement policy reduces the number of required edge servers by about 25% compared with the state-of-the-art approach; the proposed server scheduling policy reduces the energy consumption of edge servers by about 13% without causing much impact on the service quality.


翻译:我们研究如何在工作量不确定的情况下为5G网络设计边缘服务器安置和服务器调度政策。我们引入了一个新的计量标准,称为资源集中系数,以应对意外工作量爆发。在对工作量不确定性进行有力优化的同时,尽量扩大这一计量标准提供了强大的增强力。我们利用真实的痕迹和合成痕迹,表明拟议的服务器安置和服务器调度政策不仅比现有办法更能抵御工作量不确定性,而且大大降低服务供应商的成本。 具体地说,为了实现接近于零的工作量拒绝率,拟议的服务器配置政策比最新办法减少了所需的边缘服务器数量约25%;拟议的服务器调度政策将边缘服务器的能源消耗减少约13%,但不会对服务质量产生很大影响。

0
下载
关闭预览

相关内容

专知会员服务
229+阅读 · 2021年6月3日
专知会员服务
28+阅读 · 2021年5月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
专访阿里亚顿:Serverless与BFF与前端
前端之巅
45+阅读 · 2019年5月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Arxiv
0+阅读 · 2021年6月18日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
229+阅读 · 2021年6月3日
专知会员服务
28+阅读 · 2021年5月12日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
专访阿里亚顿:Serverless与BFF与前端
前端之巅
45+阅读 · 2019年5月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员