By encoding computing tasks, coded computing can not only mitigate straggling problems in federated learning (FL), but also preserve privacy of sensitive data uploaded/contributed by participating mobile users (MUs) to the centralized server, owned by a mobile application provider (MAP). However, these advantages come with extra coding cost/complexity and communication overhead (referred to as \emph{privacy cost}) that must be considered given the limited computing/communications resources at MUs/MAP, the rationality and incentive competition among MUs in contributing data to the MAP. This article proposes a novel coded FL-based framework for a privacy-aware mobile application service to address these challenges. In particular, the MAP first determines a set of the best MUs for the FL process based on MUs' provided information/features. Then, each selected MU can propose a contract to the MAP according to its expected trainable local data and privacy-protected coded data. To find the optimal contracts that can maximize utilities of the MAP and all the participating MUs while maintaining high learning quality of the whole system, we first develop a multi-principal one-agent contract-based problem leveraging coded FL-based multiple utility functions under the MUs' privacy cost, the MAP's limited computing resource, and asymmetric information between the MAP and MUs. Then, we transform the problem into an equivalent low-complexity problem and develop an iterative algorithm to solve it. Experiments with a real-world dataset show that our framework can speed up training time up to 49% and improve prediction accuracy up to 4.6 times while enhancing network's social welfare, i.e., total utility of all participating entities, up to 114% under the privacy cost consideration compared with those of baseline methods.


翻译:通过编码计算任务,编码计算不仅能够减轻联合学习(FL)中存在的棘手问题,而且还能够保护参与的移动用户(MUS)向移动应用程序提供者(MAP)拥有的中央服务器上传/贡献的敏感数据的隐私。然而,这些优势伴随着额外的编码成本/复杂度和通信管理费(称为emph{privaity cost)),而鉴于MUs/MAP的计算/通信资源有限,MUs之间在向MAP提供数据时存在理性和激励竞争。本文章提出了一个新的基于代码的基于FL的框架,用于建立对隐私有了解的流动应用的移动应用程序服务,以应对这些挑战。特别是,MAP首先根据Mus提供的信息/内容,为FL进程确定了一套最佳的编码/复杂/复杂和通信管理费管理费(称为emph{privilvact),然后,每个选定的MU可以向MAPA提出合同合同合同,根据预期的当地数据和隐私保护的编码数据。要找到最佳的合同,在MAPA和所有参与的S-al IMU(ial)之间,同时,在不断将一个运行的 Ral-l-MUDUDUL的系统下,同时将一个高成本的系统里程的系统提升一个成本-时间,然后将那些成本-MULLL的系统显示整个的系统的问题。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Arxiv
1+阅读 · 2021年8月16日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员