The Bayesian persuasion paradigm of strategic communication models interaction between a privately-informed agent, called the sender, and an ignorant but rational agent, called the receiver. The goal is typically to design a (near-)optimal communication (or signaling) scheme for the sender. It enables the sender to disclose information to the receiver in a way as to incentivize her to take an action that is preferred by the sender. Finding the optimal signaling scheme is known to be computationally difficult in general. This hardness is further exacerbated when there is also a constraint on the size of the message space, leading to NP-hardness of approximating the optimal sender utility within any constant factor. In this paper, we show that in several natural and prominent cases the optimization problem is tractable even when the message space is limited. In particular, we study signaling under a symmetry or an independence assumption on the distribution of utility values for the actions. For symmetric distributions, we provide a novel characterization of the optimal signaling scheme. It results in a polynomial-time algorithm to compute an optimal scheme for many compactly represented symmetric distributions. In the independent case, we design a constant-factor approximation algorithm, which stands in marked contrast to the hardness of approximation in the general case.


翻译:一个私人知情的代理人,称为发件人,与一个无知但理性的代理人,称为接收人之间战略通信模式互动的贝耶斯说服范式。目标通常是设计一个(近距离)最佳通信(或信号)系统,使发送人能够向接收人披露信息,从而激励她采取发件人所希望的行动。一般而言,发现最佳信号方案是计算上的困难。如果信息空间的大小也受到限制,导致在任何不变因素中接近最佳发件人效用的NP-硬度,这种硬性就更加严重。在本文件中,我们表明,在一些自然和突出的情况下,即使在信息空间有限的情况下,最优化问题也能向接收人传递。特别是,我们研究在一种对称或独立假设下发出关于行动效用分配的信号。关于对称分布,我们提供了对称性的最佳信号方案的新描述。它的结果是多时算法,在任何恒定因素中,一个最优化的公式方案,即我们连续的精确的精确度分布。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
0+阅读 · 2021年8月19日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员