将机器学习(ML)和深度学习(DL)结合在金融交易中,重点放在投资管理上。这本书解释了投资组合管理、风险分析和绩效分析的系统方法,包括使用数据科学程序的预测分析。
本书介绍了模式识别和未来价格预测对时间序列分析模型的影响,如自回归综合移动平均模型(ARIMA),季节ARIMA (SARIMA)模型和加性模型,包括最小二乘模型和长期短期记忆(LSTM)模型。运用高斯隐马尔可夫模型提出了隐模式识别和市场状态预测。这本书涵盖了K-Means模型在股票聚类中的实际应用。建立了方差协方差法和模拟法(蒙特卡罗模拟法)在风险值估算中的实际应用。它还包括使用逻辑斯蒂分类器和多层感知器分类器的市场方向分类。最后,本书介绍了投资组合的绩效和风险分析。
到本书结束时,您应该能够解释算法交易如何工作及其在现实世界中的实际应用,并知道如何应用监督和无监督的ML和DL模型来支持投资决策,并实施和优化投资策略和系统。
你将学习:
了解金融市场和算法交易的基本原理,以及适用于系统性投资组合管理的监督和无监督学习模型
了解特征工程、数据可视化、超参数优化等概念
设计、构建和测试有监督和无监督的ML和DL模型
发现季节性、趋势和市场机制,模拟市场变化和投资策略问题,预测市场方向和价格
以卓越的资产类别构建和优化投资组合,并衡量潜在风险