将机器学习(ML)和深度学习(DL)结合在金融交易中,重点放在投资管理上。这本书解释了投资组合管理、风险分析和绩效分析的系统方法,包括使用数据科学程序的预测分析。

本书介绍了模式识别和未来价格预测对时间序列分析模型的影响,如自回归综合移动平均模型(ARIMA),季节ARIMA (SARIMA)模型和加性模型,包括最小二乘模型和长期短期记忆(LSTM)模型。运用高斯隐马尔可夫模型提出了隐模式识别和市场状态预测。这本书涵盖了K-Means模型在股票聚类中的实际应用。建立了方差协方差法和模拟法(蒙特卡罗模拟法)在风险值估算中的实际应用。它还包括使用逻辑斯蒂分类器和多层感知器分类器的市场方向分类。最后,本书介绍了投资组合的绩效和风险分析。

到本书结束时,您应该能够解释算法交易如何工作及其在现实世界中的实际应用,并知道如何应用监督和无监督的ML和DL模型来支持投资决策,并实施和优化投资策略和系统。

你将学习:

了解金融市场和算法交易的基本原理,以及适用于系统性投资组合管理的监督和无监督学习模型

了解特征工程、数据可视化、超参数优化等概念

设计、构建和测试有监督和无监督的ML和DL模型

发现季节性、趋势和市场机制,模拟市场变化和投资策略问题,预测市场方向和价格

以卓越的资产类别构建和优化投资组合,并衡量潜在风险

成为VIP会员查看完整内容
0
39

相关内容

掌握使用PyTorch实现深度学习解决方案的实践方面,使用实践方法理解理论和实践。Facebook的人工智能研究小组开发了一个名为PyTorch的平台,该平台拥有良好的理论基础和实用技能,为你在现实世界中应用深度学习做好了准备。

首先,您将了解PyTorch的深度学习是如何以及为什么成为一种具有开创性的框架,它带有一组工具和技术来解决现实世界中的问题。接下来,这本书将为你打下线性代数、向量微积分、概率和最优化的数学基础。在建立了这个基础之后,您将继续讨论PyTorch的关键组件和功能,包括层、损失函数和优化算法。

您还将了解基于图形处理单元(GPU)的计算,这对训练深度学习模型是必不可少的。介绍了深度学习的前馈网络、卷积神经网络、循环神经网络、长短时记忆网络、自动编码器网络和生成对抗网络等关键网络结构。在许多训练和优化深度学习模型的技巧的支持下,这个版本的Python深度学习解释了使用PyTorch将这些模型带到生产中的最佳实践。

你会: 回顾机器学习的基本原理,如过拟合、欠拟合和正则化。 了解深度学习的基本原理,如前馈网络,卷积神经网络,递归神经网络,自动微分和随机梯度下降。 使用PyTorch深入应用线性代数 探索PyTorch的基本原理及其构建块 使用调优和优化模型

成为VIP会员查看完整内容
0
82

这本书将理论计算机科学和机器学习连接起来,探索双方可以相互促进什么。它强调需要灵活、易于处理的模型,以便更好地捕捉机器学习的难点。理论计算机科学家将介绍机器学习的重要模型和该领域的主要问题。机器学习研究人员将以一种可访问的格式介绍前沿研究,并熟悉现代算法工具包,包括矩的方法,张量分解和凸规划松弛。最坏情况分析之外的处理是建立对实践中使用的方法的严格理解,并促进发现令人兴奋的、解决长期存在的重要问题的新方法。

https://www.cambridge.org/hk/academic/subjects/computer-science/pattern-recognition-and-machine-learning/algorithmic-aspects-machine-learning?format=PB

成为VIP会员查看完整内容
0
40

这本书介绍了金融中的机器学习方法。它为量化金融提出了一个统一的处理机器学习和各种统计计算学科,如金融计量经济学和离散时间随机控制,并强调为金融数据建模和决策如何进行理论和假设检验做出算法的选择。随着计算资源和数据集的增加,机器学习已经成为金融业的一项重要技能。这本书是为在金融计量经济学,金融数学和应用统计学的高级研究生和学者写的,此外还包括在定量金融领域的定量和数据科学家。

金融中的机器学习:从理论到实践分为三个部分,每个部分包括理论和应用。第一篇从贝叶斯和频率论的角度介绍了对横断面数据的监督学习。更高级的材料强调神经网络,包括深度学习,以及高斯过程,在投资管理和衍生建模的例子。第二部分介绍了时间序列数据的监督学习,这是金融领域最常用的数据类型,并举例说明了交易、随机波动和固定收益模型。最后,第三部分介绍了强化学习及其在交易、投资和财富管理中的应用。还提供了Python代码示例,以支持读者对方法和应用的理解。这本书还包括超过80个数学和编程练习例子,与工作的解决方案可提供给教师。作为这一新兴领域研究的桥梁,最后一章从研究人员的角度介绍了金融机器学习的前沿,强调了统计物理中有多少众所周知的概念可能会作为金融机器学习的重要方法出现。

https://www.springer.com/gp/book/9783030410674

代码: https://github.com/mfrdixon/ML_Finance_Codes

成为VIP会员查看完整内容
2
115

机器学习和数据科学金融蓝图/Machine Learning and Data Science Blueprints for Finance,施普林格国际出版社,2020年4月出版。

在接下来的几十年中,机器学习和数据科学将改变金融业。通过这本实用书籍,分析师、交易员、研究人员和开发人员将学习到如何构建对该行业至关重要的机器学习算法。你可以在有监督、无监督和强化学习以及自然语言处理(NLP)中研究ML概念和20多个案例研究。本书非常适合对冲基金、投资和零售银行以及金融科技公司的专业人士使用,它还深入研究了投资组合管理,算法交易,衍生产品定价,欺诈检测,资产价格预测,情绪分析以及机器人顾问和聊天机器人开发。您将探索从业人员面临的现实问题,并学习由代码和示例支持的科学合理的解决方案。

  • 用于交易策略、衍生品定价和投资组合管理的监督学习回归模型
  • 用于信用违约风险预测、欺诈检测和交易策略的监督学习分类模型
  • 用于投资组合管理、交易策略、收益率曲线施工的降维技术
  • 在交易策略与案例研究和投资组合管理的寻找相似对象的算法和聚类技术
  • 强化学习模型和技术用于建立交易策略,衍生品对冲,和投资组合管理
  • 使用Python库(如NLTK和scikit-learn)将文本转换为有意义的表示的NLP技术

成为VIP会员查看完整内容
0
166

这本书是关于运用机器和深度学习来解决石油和天然气行业的一些挑战。这本书开篇简要讨论石油和天然气勘探和生产生命周期中不同阶段的数据流工业操作。这导致了对一些有趣问题的调查,这些问题很适合应用机器和深度学习方法。最初的章节提供了Python编程语言的基础知识,该语言用于实现算法;接下来是监督和非监督机器学习概念的概述。作者提供了使用开源数据集的行业示例以及对算法的实际解释,但没有深入研究所使用算法的理论方面。石油和天然气行业中的机器学习涵盖了包括地球物理(地震解释)、地质建模、油藏工程和生产工程在内的各种行业主题。

在本书中,重点在于提供一种实用的方法,提供用于实现机器的逐步解释和代码示例,以及用于解决油气行业现实问题的深度学习算法。

你将学到什么

  • 了解石油和天然气行业的端到端的行业生命周期和数据流
  • 了解计算机编程和机器的基本概念,以及实现所使用的算法所需的深度学习
  • 研究一些有趣的行业问题,这些问题很有可能被机器和深度学习解决
  • 发现在石油和天然气行业中执行机器和深度学习项目的实际考虑和挑战

这本书是给谁的

  • 石油和天然气行业的专业人员,他们可以受益于对机器的实际理解和解决现实问题的深度学习方法。
成为VIP会员查看完整内容
0
64

机器学习简明指南,不可错过!

A Machine Learning Primer

亚马逊研究科学家Mihail Eric关于机器学习实践重要经验。包括监督学习、机器学习实践、无监督学习以及深度学习。具体为:

监督学习

  • 线性回归
  • 逻辑回归
  • 朴素贝叶斯
  • 支持向量机
  • 决策树
  • K-近邻

机器学习实践

  • 偏差-方差权衡
  • 如何选择模型
  • 如何选择特征
  • 正则化你的模型
  • 模型集成
  • 评价指标

无监督学习

  • 市场篮子分析
  • K均值聚类
  • 主成分分析

深度学习

  • 前向神经网络
  • 神经网络实践
  • 卷积神经网络
  • 循环神经网络
成为VIP会员查看完整内容
0
57

凸优化研究在凸集上最小化凸函数的问题。凸性,连同它的许多含义,已经被用来为许多类凸程序提出有效的算法。因此,凸优化已经广泛地影响了科学和工程的几个学科。

过去几年,凸优化算法彻底改变了离散和连续优化问题的算法设计。对于图的最大流、二部图的最大匹配和子模函数最小化等问题,已知的最快算法涉及到对凸优化算法的基本和重要使用,如梯度下降、镜像下降、内点方法和切割平面方法。令人惊讶的是,凸优化算法也被用于设计离散对象(如拟阵)的计数问题。同时,凸优化算法已经成为许多现代机器学习应用的中心。由于输入实例越来越大、越来越复杂,对凸优化算法的需求也极大地推动了凸优化技术本身的发展。

这本书的目的是使读者能够获得对凸优化算法的深入理解。重点是从第一性原理推导出凸优化的关键算法,并根据输入长度建立精确的运行时间界限。由于这些方法的广泛适用性,一本书不可能向所有人展示这些方法的应用。这本书展示了各种离散优化和计数问题的快速算法的应用。本书中所选的应用程序的目的是为了说明连续优化和离散优化之间的一个相当令人惊讶的桥梁。

目标受众包括高级本科生、研究生和理论计算机科学、离散优化和机器学习方面的研究人员。

https://convex-optimization.github.io/

第一章-连续优化和离散优化的衔接

我们提出了连续优化和离散优化之间的相互作用。最大流问题是一个激励人心的例子。我们也追溯了线性规划的历史——从椭球法到现代内点法。最后介绍了椭球法在求解最大熵问题等一般凸规划问题上的一些最新成果。

第二章 预备知识

我们复习这本书所需的数学基础知识。这些内容包括多元微积分、线性代数、几何、拓扑、动力系统和图论中的一些标准概念和事实。

第三章-凸性

我们引入凸集,凸性的概念,并展示了伴随凸性而来的能力:凸集具有分离超平面,子梯度存在,凸函数的局部最优解是全局最优解。

第四章-凸优化与效率

我们提出了凸优化的概念,并正式讨论了它意味着什么,有效地解决一个凸程序作为一个函数的表示长度的输入和期望的精度。

第五章-对偶性与最优性

我们引入拉格朗日对偶性的概念,并证明在一个称为Slater条件的温和条件下,强拉格朗日对偶性是成立的。随后,我们介绍了拉格朗日对偶和优化方法中经常出现的Legendre-Fenchel对偶。最后,给出了Kahn-Karush-Tucker(KKT)最优性条件及其与强对偶性的关系。

第六章-梯度下降

我们首先介绍梯度下降法,并说明如何将其视为最陡下降。然后,我们证明了梯度下降法在函数的梯度是连续的情况下具有收敛时间界。最后,我们使用梯度下降法提出了一个快速算法的离散优化问题:计算最大流量无向图。

第七章-镜像下降和乘法权值更新

我们推出我们的凸优化的第二个算法-称为镜面下降法-通过正则化观点。首先,提出了基于概率单纯形的凸函数优化算法。随后,我们展示了如何推广它,重要的是,从它推导出乘法权值更新(MWU)方法。然后利用后一种算法开发了一个快速的近似算法来解决图上的二部图匹配问题。

第八章-加速梯度下降

提出了Nesterov的加速梯度下降算法。该算法可以看作是前面介绍的梯度下降法和镜像下降法的混合。我们还提出了一个应用加速梯度法求解线性方程组。

第九章-牛顿法

IWe开始了设计凸优化算法的旅程,其迭代次数与误差成对数关系。作为第一步,我们推导并分析了经典的牛顿方法,这是一个二阶方法的例子。我们认为牛顿方法可以被看作是黎曼流形上的最速下降,然后对其收敛性进行仿射不变分析。

第十章 线性规划的内点法

利用牛顿法及其收敛性,推导出一个线性规划的多项式时间算法。该算法的关键是利用障碍函数的概念和相应的中心路径,将有约束优化问题简化为无约束优化问题。

第十一章-内点法的变种与自洽

给出了线性规划中路径遵循IPM的各种推广。作为应用,我们推导了求解s-t最小代价流问题的快速算法。随后,我们引入了自一致性的概念,并给出了多边形和更一般凸集的障碍函数的概述。

第十二章 线性规划的椭球法

介绍了凸优化的一类切割平面方法,并分析了一种特殊情况,即椭球体法。然后,我们展示了如何使用这个椭球方法来解决线性程序超过0-1多边形时,我们只能访问一个分离oracle的多边形。

第十三章-凸优化的椭球法

我们展示了如何适应椭球法求解一般凸程序。作为应用,我们提出了子模函数最小化的多项式时间算法和计算组合多边形上的最大熵分布的多项式时间算法。

成为VIP会员查看完整内容
0
99

最近,金融业以惊人的速度采用了Python,一些最大的投资银行和对冲基金使用它来构建核心交易和风险管理系统。为python3更新,这本手册的第二版帮助您开始使用语言,指导开发人员和定量分析人员通过Python库和工具构建金融应用程序和交互式金融分析。

在本书中,作者Yves Hilpisch还展示了如何基于一个大型的、现实的案例研究,为基于蒙特卡洛模拟的衍生品和风险分析开发一个完整的框架。这本书的大部分使用了交互式的IPython笔记本。

成为VIP会员查看完整内容
0
64

Python是金融业中使用的最流行的编程语言之一,具有大量的配套库。

在这本书中,您将介绍下载金融数据和为建模做准备的不同方法。你将计算技术分析中常用的指标,如波林格波段、MACD、RSI和backtest自动交易策略。接下来,您将学习时间序列分析和模型,例如指数平滑、ARIMA和GARCH(包括多元规范),然后介绍流行的CAPM和Fama-French三因素模型。然后,您将了解如何优化资产配置,并将蒙特卡洛模拟用于计算美国期权价格和估计风险价值(VaR)等任务。在后面的章节中,您将完成金融领域的整个数据科学项目。您还将学习如何使用高级分类器(如random forest、XGBoost、LightGBM和堆叠模型)解决信用卡欺诈和默认问题。然后您就可以调优模型的超参数并处理类的不平衡。最后,您将学习如何使用深度学习(PyTorch)来处理财务任务。

在本书的末尾,您将学会如何使用基于收据的方法有效地分析财务数据。

https://www.packtpub.com/data/python-for-finance-cookbook

成为VIP会员查看完整内容
0
93

掌握通过机器学习和深度学习识别和解决复杂问题的基本技能。使用真实世界的例子,利用流行的Python机器学习生态系统,这本书是你学习机器学习的艺术和科学成为一个成功的实践者的完美伴侣。本书中使用的概念、技术、工具、框架和方法将教会您如何成功地思考、设计、构建和执行机器学习系统和项目。

使用Python进行的实际机器学习遵循结构化和全面的三层方法,其中包含了实践示例和代码。

第1部分侧重于理解机器学习的概念和工具。这包括机器学习基础,对算法、技术、概念和应用程序的广泛概述,然后介绍整个Python机器学习生态系统。还包括有用的机器学习工具、库和框架的简要指南。

第2部分详细介绍了标准的机器学习流程,重点介绍了数据处理分析、特征工程和建模。您将学习如何处理、总结和可视化各种形式的数据。特性工程和选择方法将详细介绍真实数据集,然后是模型构建、调优、解释和部署。

第3部分探讨了多个真实世界的案例研究,涵盖了零售、交通、电影、音乐、营销、计算机视觉和金融等不同领域和行业。对于每个案例研究,您将学习各种机器学习技术和方法的应用。动手的例子将帮助您熟悉最先进的机器学习工具和技术,并了解什么算法最适合任何问题。

实用的机器学习与Python将授权您开始解决您自己的问题与机器学习今天!

你将学习:

  • 执行端到端机器学习项目和系统
  • 使用行业标准、开放源码、健壮的机器学习工具和框架实现实践示例
  • 回顾描述机器学习和深度学习在不同领域和行业中的应用的案例研究
  • 广泛应用机器学习模型,包括回归、分类和聚类。
  • 理解和应用深度学习的最新模式和方法,包括CNNs、RNNs、LSTMs和transfer learning。

这本书是给谁看的 IT专业人士、分析师、开发人员、数据科学家、工程师、研究生

目录:

Part I: Understanding Machine Learning

  • Chapter 1: Machine Learning Basics
  • Chapter 2: The Python Machine Learning Ecosystem Part II: The Machine Learning Pipeline
  • Chapter 3: Processing, Wrangling and Visualizing Data
  • Chapter 4: Feature Engineering and Selection
  • Chapter 5: Building, Tuning and Deploying Models Part III: Real-World Case Studies
  • Chapter 6: Analyzing Bike Sharing Trends
  • Chapter 7: Analyzing Movie Reviews Sentiment
  • Chapter 8: Customer Segmentation and Effective Cross Selling
  • Chapter 9: Analyzing Wine Types and Quality
  • Chapter 10: Analyzing Music Trends and Recommendations
  • Chapter 11: Forecasting Stock and Commodity Prices

Chapter 12: Deep Learning for Computer Vision

成为VIP会员查看完整内容
0
131
小贴士
相关VIP内容
专知会员服务
82+阅读 · 5月21日
专知会员服务
40+阅读 · 1月25日
专知会员服务
166+阅读 · 2020年12月13日
专知会员服务
64+阅读 · 2020年11月3日
专知会员服务
57+阅读 · 2020年10月5日
专知会员服务
99+阅读 · 2020年9月1日
专知会员服务
64+阅读 · 2020年8月1日
专知会员服务
93+阅读 · 2020年7月11日
相关论文
Rui Lu,Gao Huang,Simon S. Du
0+阅读 · 6月15日
Gergő Pintér,Imre Felde
0+阅读 · 6月15日
Mateusz Ochal,Massimiliano Patacchiola,Amos Storkey,Jose Vazquez,Sen Wang
0+阅读 · 6月14日
Cuong C. Nguyen,Thanh-Toan Do,Gustavo Carneiro
0+阅读 · 6月9日
Vít Škvára,Jan Franců,Matěj Zorek,Tomáš Pevný,Václav Šmídl
0+阅读 · 6月8日
T. Aarrestad,M. van Beekveld,M. Bona,A. Boveia,S. Caron,J. Davies,A. De Simone,C. Doglioni,J. M. Duarte,A. Farbin,H. Gupta,L. Hendriks,L. Heinrich,J. Howarth,P. Jawahar,A. Jueid,J. Lastow,A. Leinweber,J. Mamuzic,E. Merényi,A. Morandini,P. Moskvitina,C. Nellist,J. Ngadiuba,B. Ostdiek,M. Pierini,B. Ravina,R. Ruiz de Austri,S. Sekmen,M. Touranakou,M. Vaškevičiūte,R. Vilalta,J. R. Vlimant,R. Verheyen,M. White,E. Wulff,E. Wallin,K. A. Wozniak,Z. Zhang
0+阅读 · 5月28日
Shuangjun Liu,Naveen Sehgal,Sarah Ostadabbas
0+阅读 · 5月23日
Liuyi Yao,Zhixuan Chu,Sheng Li,Yaliang Li,Jing Gao,Aidong Zhang
72+阅读 · 2020年2月5日
Mobile big data analysis with machine learning
Jiyang Xie,Zeyu Song,Yupeng Li,Zhanyu Ma
5+阅读 · 2018年8月2日
Top