Knowledge distillation-based anomaly detection methods generate same outputs for unknown classes due to the symmetric form of the input and ignore the powerful semantic information of the output of the teacher network since it is only used as a "reference standard". Towards this end, this work proposes a novel Asymmetric Distillation Post-Segmentation (ADPS) method to effectively explore the asymmetric structure of the input and the discriminative features of the teacher network. Specifically, a simple yet effective asymmetric input approach is proposed to make different data flows through the teacher and student networks. The student network enables to have different inductive and expressive abilities, which can generate different outputs in anomalous regions. Besides, to further explore the semantic information of the teacher network and obtain effective discriminative boundaries, the Weight Mask Block (WMB) and the post-segmentation module are proposede. WMB leverages a weighted strategy by exploring teacher-student feature maps to highlight anomalous features. The post-segmentation module further learns the anomalous features and obtains valid discriminative boundaries. Experimental results on three benchmark datasets demonstrate that the proposed ADPS achieves state-of-the-art anomaly segmentation results.
翻译:以知识蒸馏为基础的异常现象检测方法,由于输入的对称形式,对未知班级产生同样的产出,而忽略了教师网络产出的有力语义信息,因为它仅被用作“参考标准”。为此,这项工作提出了一种新的对称蒸馏后分层(ADPS)方法,以有效探索教师网络投入的不对称结构和歧视性特征。具体地说,建议采用一种简单而有效的不对称输入方法,通过教师和学生网络进行不同的数据流动。学生网络能够具有不同的感知和表达能力,在异常地区产生不同的产出。此外,进一步探索教师网络的语义信息并获得有效的歧视性界限,提出了WMB(WMB)和后分层模块。WMB利用一种加权战略,探索教师-学生特征图以突出异常特征。后分层模块进一步学习了异常特征并获取了有效的歧视性界限。此外,还进一步探索了教师网络的语义信息,并获得了有效的歧视性界限,还提出了WMB(WMB)和后分层模块。