Convolution Neural Networks (CNNs) have been used in various fields and are showing demonstrated excellent performance, especially in Single-Image Super Resolution (SISR). However, recently, CNN-based SISR has numerous parameters and computational costs for obtaining better performance. As one of the methods to make the network efficient, Knowledge Distillation (KD) which optimizes the performance trade-off by adding a loss term to the existing network architecture is currently being studied. KD for SISR is mainly proposed as a feature distillation (FD) to minimize L1-distance loss of feature maps between teacher and student networks, but it does not fully take into account the amount and importance of information that the student can accept. In this paper, we propose a feature-based adaptive contrastive distillation (FACD) method for efficiently training lightweight SISR networks. We show the limitations of the existing feature-distillation (FD) with L1-distance loss, and propose a feature-based contrastive loss that maximizes the mutual information between the feature maps of the teacher and student networks. The experimental results show that the proposed FACD improves not only the PSNR performance of the entire benchmark datasets and scales but also the subjective image quality compared to the conventional FD approach.


翻译:在许多领域,特别是在单一图像超级分辨率(SISR)中,运用了革命神经网络(CNN),显示成绩优异,但最近,有线电视新闻网的SISSR拥有许多参数和计算成本,以取得更好的业绩。作为提高网络效率的方法之一,目前正在研究知识蒸馏(KD),通过在现有网络结构中增加一个损失术语,优化业绩权衡。SISR的KD主要作为一种特性蒸馏(FD),以最大限度地减少教师和学生网络特征图的L1距离损失,但并未充分考虑到学生能够接受的信息的数量和重要性。在本文件中,我们提出了一种基于特性的适应性对比蒸馏(FACD)方法,以高效培训轻度的SISSR网络。我们显示了现有特征蒸馏(FD)与L1距离损失之间的局限性,并提出了基于特征的对比性损失,以最大限度地增加教师和学生网络特征图之间的相互信息。实验结果表明,拟议的FACD方法不仅改进了常规数据质量,而且改进了PSFD整个图像的尺度。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员