Neural networks that satisfy invariance with respect to input permutations have been widely studied in machine learning literature. However, in many applications, only a subset of all input permutations is of interest. For heterogeneous graph data, one can focus on permutations that preserve node types. We fully characterize linear layers invariant to such permutations. We verify experimentally that implementing these layers in graph neural network architectures allows learning important node interactions more effectively than existing techniques. We show that the dimension of space of these layers is given by a generalization of Bell numbers, extending the work (Maron et al., 2019). We further narrow the invariant network design space by addressing a question about the sizes of tensor layers necessary for function approximation on graph data. Our findings suggest that function approximation on a graph with $n$ nodes can be done with tensors of sizes $\leq n$, which is tighter than the best-known bound $\leq n(n-1)/2$. For $d \times d$ image data with translation symmetry, our methods give a tight upper bound $2d - 1$ (instead of $d^{4}$) on sizes of invariant tensor generators via a surprising connection to Davenport constants.


翻译:在机器学习文献中广泛研究了满足输入变异方面差异的神经网络。然而,在许多应用中,只有所有输入变异的子集才值得注意。对于多元图形数据,我们可以侧重于保存节点类型的变异性。我们完全将线性层定性为这种变异性。我们实验性地核查,在图形神经网络结构中执行这些层可以比现有技术更有效地学习重要的节点互动。我们显示,这些层空间的维度是通过对贝尔数字的概括化来给予的,延长了工作(Maron et al., 2019)。我们进一步缩小了内变异网络设计空间,解决了图形数据函数近似所需的高温层大小问题。我们的调查结果表明,对以美元为节点的图形,可以用比最著名的约束值$leq n(n-1)/2美元更紧的电压。对于带有翻译对称的图像数据(Maron etal etal laxal constreptal $-stalfor connal contal $4] a stoltrastal destal destal destal destaltition a devaltize.</s>

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员