We study the problem of interpolating a noisy Fourier-sparse signal in the time duration $[0, T]$ from noisy samples in the same range, where the ground truth signal can be any $k$-Fourier-sparse signal with band-limit $[-F, F]$. Our main result is an efficient Fourier Interpolation algorithm that improves the previous best algorithm by [Chen, Kane, Price, and Song, FOCS 2016] in the following three aspects: $\bullet$ The sample complexity is improved from $\widetilde{O}(k^{51})$ to $\widetilde{O}(k^{4})$. $\bullet$ The time complexity is improved from $ \widetilde{O}(k^{10\omega+40})$ to $\widetilde{O}(k^{4 \omega})$. $\bullet$ The output sparsity is improved from $\widetilde{O}(k^{10})$ to $\widetilde{O}(k^{4})$. Here, $\omega$ denotes the exponent of fast matrix multiplication. The state-of-the-art sample complexity of this problem is $\sim k^4$, but was only known to be achieved by an *exponential-time* algorithm. Our algorithm uses the same number of samples but has a polynomial runtime, laying the groundwork for an efficient Fourier Interpolation algorithm. The centerpiece of our algorithm is a new sufficient condition for the frequency estimation task -- a high signal-to-noise (SNR) band condition -- which allows for efficient and accurate signal reconstruction. Based on this condition together with a new structural decomposition of Fourier signals (Signal Equivalent Method), we design a cheap algorithm for estimating each "significant" frequency within a narrow range, which is then combined with a signal estimation algorithm into a new Fourier Interpolation framework to reconstruct the ground-truth signal.


翻译:我们研究在时间段 $[0, T] 从同一范围内的杂乱样本中 $[0, T]美元 内插一个杂乱的 Fourier - sparse 信号的问题。 我们的主要结果是一个高效的 Fleier Indigation 算法,它通过[Chen, Kane, Price, and Song, FOCS 2016] 在以下三个方面改进了先前的最佳算法。 样本的复杂性从 $\ bulllet$ (k ⁇ 51}) 提高到 $\ balledy Netwider{O} (k ⁇ 4} 4} g) 美元。 地面真相信号信号信号值从$\ $\ $\ four- scaretroupation to a dismation.

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员