Paranasal anomalies are commonly discovered during routine radiological screenings and can present with a wide range of morphological features. This diversity can make it difficult for convolutional neural networks (CNNs) to accurately classify these anomalies, especially when working with limited datasets. Additionally, current approaches to paranasal anomaly classification are constrained to identifying a single anomaly at a time. These challenges necessitate the need for further research and development in this area. In this study, we investigate the feasibility of using a 3D convolutional neural network (CNN) to classify healthy maxillary sinuses (MS) and MS with polyps or cysts. The task of accurately identifying the relevant MS volume within larger head and neck Magnetic Resonance Imaging (MRI) scans can be difficult, but we develop a straightforward strategy to tackle this challenge. Our end-to-end solution includes the use of a novel sampling technique that not only effectively localizes the relevant MS volume, but also increases the size of the training dataset and improves classification results. Additionally, we employ a multiple instance ensemble prediction method to further boost classification performance. Finally, we identify the optimal size of MS volumes to achieve the highest possible classification performance on our dataset. With our multiple instance ensemble prediction strategy and sampling strategy, our 3D CNNs achieve an F1 of 0.85 whereas without it, they achieve an F1 of 0.70. We demonstrate the feasibility of classifying anomalies in the MS. We propose a data enlarging strategy alongside a novel ensembling strategy that proves to be beneficial for paranasal anomaly classification in the MS.
翻译:上颌窦内的异常在常规影像筛查中经常被发现,可以展示各种形态特征。这种多样性使得卷积神经网络(CNNs)难以准确地分类这些异常,特别是当只有有限的数据集时。此外,当前的上颌窦异常分类方法局限于一次识别单个异常。这些挑战需要在这个领域进行进一步的研究和开发。在本研究中,我们探讨了使用三维卷积神经网络(CNN)对健康上颌窦和带有息肉或囊肿的上颌窦进行分类的可行性。在较大的头颈磁共振成像(MRI)扫描中准确识别相关的上颌窦体积是一项艰巨的任务,但我们开发了一种简单的策略来应对这一挑战。我们的端到端解决方案包括使用一种新颖的采样技术,不仅可以有效地定位相关的上颌窦体积,而且可以增加训练数据集的规模,并提高分类结果。此外,我们采用多实例集成预测方法,进一步提升了分类性能。最后,我们确定了上颌窦体积的最佳大小,以实现最高可能的分类性能。使用多实例集成预测策略和采样策略,我们的三维卷积神经网络能够实现F1得分为0.85,而没有这些策略时,它们的F1得分为0.70。我们展示了在上颌窦中分类异常的可行性。我们提出了一种数据扩充策略以及一种新颖的集成策略,证明了它们对上颌窦异常分类的有益性。