The class of Gibbs point processes (GPP) is a large class of spatial point processes in the sense that they can model both clustered and repulsive point patterns. They are specified by their conditional intensity, which for a point pattern $\mathbf{x}$ and a location $u$, is roughly speaking the probability that an event occurs in an infinitesimal ball around $u$ given the rest of the configuration is $\mathbf{x}$. The most simple, natural and easiest to interpret class of models is the class of pairwise interaction point processes where the conditional intensity depends on the number of points and pairwise distances between them. Estimating this function non parametrically has almost never been considered in the literature. We tackle this question and propose an orthogonal series estimation procedure of the log pairwise interaction function. Under some conditions provided on the spatial GPP and on the basis system, we show that this orthogonal series estimator is consistent and asymptotically normal. The estimation procedure is simple, fast and completely data-driven. We show its efficiency through simulation experiments and we apply it to three datasets.


翻译:Gibbs点进程( GPP) 是一个巨大的空间点进程类别, 即它们可以同时模拟集成和反差点模式。 它们由有条件的强度来指定, 对于一个点模式 $\ mathbf{x} 美元和一个地点 $u$, 大致上说, 事件是在一个极小的球中发生的概率, 大约在 $ 美元左右, 因为配置的其余部分是 $\ mathbf{x} 美元。 最简单、 自然和最容易解释模型类别 。 最简单、 自然和最容易解释的就是 双向互动点进程类别, 其条件强度取决于点数和它们之间的对对称距离 。 在文献中几乎从未考虑过这个函数 。 我们处理这个问题并提出对齐互动函数的正对数序列估计程序 。 在空间 GPPPP 和 系统 所提供的某些条件下, 我们显示, 这个矩形序列的估测数是一致的, 并且不那么普通的。 估计程序是简单、 快速和完全的数据驱动程序 。 我们通过模拟实验来显示其效率, 我们将其应用于三个数据集 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月3日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员