The class of Gibbs point processes (GPP) is a large class of spatial point processes in the sense that they can model both clustered and repulsive point patterns. They are specified by their conditional intensity, which for a point pattern $\mathbf{x}$ and a location $u$, is roughly speaking the probability that an event occurs in an infinitesimal ball around $u$ given the rest of the configuration is $\mathbf{x}$. The most simple, natural and easiest to interpret class of models is the class of pairwise interaction point processes where the conditional intensity depends on the number of points and pairwise distances between them. Estimating this function non parametrically has almost never been considered in the literature. We tackle this question and propose an orthogonal series estimation procedure of the log pairwise interaction function. Under some conditions provided on the spatial GPP and on the basis system, we show that this orthogonal series estimator is consistent and asymptotically normal. The estimation procedure is simple, fast and completely data-driven. We show its efficiency through simulation experiments and we apply it to three datasets.
翻译:Gibbs点进程( GPP) 是一个巨大的空间点进程类别, 即它们可以同时模拟集成和反差点模式。 它们由有条件的强度来指定, 对于一个点模式 $\ mathbf{x} 美元和一个地点 $u$, 大致上说, 事件是在一个极小的球中发生的概率, 大约在 $ 美元左右, 因为配置的其余部分是 $\ mathbf{x} 美元。 最简单、 自然和最容易解释模型类别 。 最简单、 自然和最容易解释的就是 双向互动点进程类别, 其条件强度取决于点数和它们之间的对对称距离 。 在文献中几乎从未考虑过这个函数 。 我们处理这个问题并提出对齐互动函数的正对数序列估计程序 。 在空间 GPPPP 和 系统 所提供的某些条件下, 我们显示, 这个矩形序列的估测数是一致的, 并且不那么普通的。 估计程序是简单、 快速和完全的数据驱动程序 。 我们通过模拟实验来显示其效率, 我们将其应用于三个数据集 。