We formalize the problem of contextual optimization through the lens of Bayesian experimental design and propose CO-BED -- a general, model-agnostic framework for designing contextual experiments using information-theoretic principles. After formulating a suitable information-based objective, we employ black-box variational methods to simultaneously estimate it and optimize the designs in a single stochastic gradient scheme. We further introduce a relaxation scheme to allow discrete actions to be accommodated. As a result, CO-BED provides a general and automated solution to a wide range of contextual optimization problems. We illustrate its effectiveness in a number of experiments, where CO-BED demonstrates competitive performance even when compared to bespoke, model-specific alternatives.
翻译:我们通过Bayesian实验设计将环境优化问题正式化,并提议CO-BED -- -- 利用信息理论原则设计背景实验的一般、模型和不可知性框架。我们在制定适当的基于信息的目标之后,采用黑盒变式方法,同时估计它,在单一的随机梯度计划中优化设计。我们进一步引入一个放松计划,允许采取互不关联的行动。因此,CO-BED为一系列背景优化问题提供了一般和自动的解决办法。我们在若干实验中展示了它的有效性,CO-BED在试验中展示了竞争的性能,即使比较了具体模型的替代方法。</s>