The numerical approximation of low-regularity solutions to the nonlinear Schr\"odinger equation is notoriously difficult and even more so if structure-preserving schemes are sought. Recent works have been successful in establishing symmetric low-regularity integrators for this equation. However, so far, all prior symmetric low-regularity algorithms are fully implicit, and therefore require the solution of a nonlinear equation at each time step, leading to significant numerical cost in the iteration. In this work, we introduce the first fully explicit (multi-step) symmetric low-regularity integrators for the nonlinear Schr\"odinger equation. We demonstrate the construction of an entire class of such schemes which notably can be used to symmetrise (in explicit form) a large amount of existing low-regularity integrators. We provide rigorous convergence analysis of our schemes and numerical examples demonstrating both the favourable structure preservation properties obtained with our novel schemes, and the significant reduction in computational cost over implicit methods.
翻译:暂无翻译