Partial differential equations (PDEs) with spatially-varying coefficients arise throughout science and engineering, modeling rich heterogeneous material behavior. Yet conventional PDE solvers struggle with the immense complexity found in nature, since they must first discretize the problem -- leading to spatial aliasing, and global meshing/sampling that is costly and error-prone. We describe a method that approximates neither the domain geometry, the problem data, nor the solution space, providing the exact solution (in expectation) even for problems with extremely detailed geometry and intricate coefficients. Our main contribution is to extend the walk on spheres (WoS) algorithm from constant- to variable-coefficient problems, by drawing on techniques from volumetric rendering. In particular, an approach inspired by null-scattering yields unbiased Monte Carlo estimators for a large class of 2nd-order elliptic PDEs, which share many attractive features with Monte Carlo rendering: no meshing, trivial parallelism, and the ability to evaluate the solution at any point without solving a global system of equations.
翻译:在科学和工程的整个过程中,都出现了带有空间差异系数的局部差异方程式(PDEs),这种方程式模拟了丰富的多元物质行为。然而,传统的PDE解答器却在自然界中挣扎,因为通常的PDE解答器必须首先将问题分解 -- -- 导致空间化化,以及全球网格/抽样,费用昂贵且容易出错。我们描述了一种方法,它既不接近域的几何、问题数据,也不接近解决方案空间,甚至为极其详细的几何和复杂系数的问题提供了确切的解决方案(期待 ) 。 我们的主要贡献是通过从体积转换中提取技术,将领域(WoS)的算法从常数到可变相增效应的计算法扩展。 特别是,由一无休止的蒙特卡洛测算器所激发的一种方法,它与Monte Carlo投影系统具有许多吸引力的特征:没有网格、微不足道的平行和在任何一点上评价解决方案的能力,而没有解决全球方程式。