We develop methods for reducing the dimensionality of large data sets, common in biomedical applications. Learning about patients using genetic data often includes more features than observations, which makes direct supervised learning difficult. One method of reducing the feature space is to use latent Dirichlet allocation to group genetic variants in an unsupervised manner. Latent Dirichlet allocation describes a patient as a mixture of topics corresponding to genetic variants. This can be generalized as a Bayesian tensor decomposition to account for multiple feature variables. Our most significant contributions are with hierarchical topic modeling. We design distinct methods of incorporating hierarchical topic modeling, based on nested Chinese restaurant processes and Pachinko Allocation Machine, into Bayesian tensor decomposition. We apply these models to examine patients with one of four common types of cancer (breast, lung, prostate, and colorectal) and siblings with and without autism spectrum disorder. We linked the genes with their biological pathways and combine this information into a tensor of patients, counts of their genetic variants, and the genes' membership in pathways. We find that our trained models outperform baseline models, with respect to coherence, by up to 40%.


翻译:生物医学应用中常见的、关于使用基因数据的病人的学习往往包括更多的特征,而不是观测,这使得直接监督的学习困难。减少特征空间的方法之一是以不受监督的方式将潜在的迪里赫特分配用于组群遗传变异。 中迪里赫特分配将病人描述为与基因变异相对应的混合课题。 这可以被广泛称为一种巴伊西亚的强力分解,以考虑到多种特征变量。 我们最重要的贡献是等级主题模型。 我们设计了将等级主题模型纳入Bayesian Exwards 和 Pachinko 分配机器的不同方法。 我们用这些模型来检查四种常见癌症(乳癌、肺癌、前列腺癌和彩色切除症)之一的病人和患有自闭症的兄弟姐妹。 我们将这些基因与其生物路径连接起来,并将这一信息与病人的气压、基因变数和路径中的基因基因组合结合起来。 我们发现,我们经过训练的模型超越了基准模型的模型,以40 %的一致性。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月6日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员