This paper proposes a general procedure to analyse high-dimensional spatio-temporal count data, with special emphasis on relative risks estimation in cancer epidemiology. Model fitting is carried out using integrated nested Laplace approximations over a partition of the spatio-temporal domain. This is a simple idea that works very well in this context as the models are defined to borrow strength locally in space and time, providing reliable risk estimates. Parallel and distributed strategies are proposed to speed up computations in a setting where Bayesian model fitting is generally prohibitively time-consuming and even unfeasible. We evaluate the whole procedure in a simulation study with a twofold objective: to estimate risks accurately and to detect extreme risk areas while avoiding false positives/negatives. We show that our method outperforms classical global models. A real data analysis comparing the global models and the new procedure is also presented.
翻译:本文提出了分析高维时空计数数据的一般程序,特别强调癌症流行病学的相对风险估计。模型的安装使用在时空空间域分割上的综合嵌套拉普尔近似值进行。这是一个简单的想法,在这方面非常有效,因为模型的定义是在空间和时间上在当地借用力量,提供可靠的风险估计。提出了平行和分散的战略,以便在巴伊西亚模型安装通常耗时甚多,甚至不可行的情况下加快计算。我们在模拟研究中评估整个程序,有两个双重目标:准确估计风险并探测极端风险地区,同时避免错误的正反效果。我们表明,我们的方法比传统的全球模型要强。还介绍了比较全球模型和新程序的真实数据分析。