In the Large Hadron Collider, the beam losses are continuously measured for machine protection. By design, most of the particle losses occur in the collimation system, where the particles with high oscillation amplitudes or large momentum error are scraped from the beams. The level of particle losses typically is optimized manually by changing multiple control parameters, among which are, for example, currents in the focusing and defocusing magnets along the collider. It is generally challenging to model and predict losses based on the control parameters due to various (non-linear) effects in the system, such as electron clouds, resonance effects, etc, and multiple sources of uncertainty. At the same time understanding the influence of control parameters on the losses is extremely important in order to improve the operation and performance, and future design of accelerators. Existing results showed that it is hard to generalize the models, which assume the regression model of losses depending on control parameters, from fills carried out throughout one year to the data of another year. To circumvent this, we propose to use an autoregressive modeling approach, where we take into account not only the observed control parameters but also previous loss values. We use an equivalent Kalman Filter (KF) formulation in order to efficiently estimate models with different lags.
翻译:在大型 hadron 相撞器中, 光束损失是不断测量机器保护的。 设计上, 大部分粒子损失都发生在振幅振幅高的粒子或巨大的动向错误从光束中分离出来的凝聚系统中。 粒子损失的水平通常通过改变多个控制参数来优化, 例如, 在对流器中, 磁体的焦点和脱焦磁体中的潮流。 一般而言, 要根据控制参数来建模和预测由于系统中各种( 非线性)影响( 电子云、 共振效应等) 和多种不确定性源等控制参数造成的损失, 是很困难的。 与此同时, 了解控制参数对损失的影响对于改进操作和性能以及未来加速器的设计极为重要。 现有的结果表明, 很难将模型加以概括, 以控制参数为基础承担损失的回归模型, 从填满一年到另一年的数据。 为了绕开这一模型, 我们提议使用自动反向回移模型的方法, 但也建议使用一种自动反向模型, 我们使用一种不同的变差模型, 而不是用一种不同的变差的模型 。