More realistic models can be built taking into account spatial dependence when analyzing areal data. Most of the models for areal data employ adjacency matrices to assess the spatial structure of the data. Such methodologies impose some limitations. Remarkably, spatial polygons of different shapes and sizes are not treated differently, and it becomes difficult, if not impractical, to compute predictions based on these models. Moreover, spatial misalignment (when spatial information is available at different spatial levels) becomes harder to be handled. These limitations can be circumvented by formulating models using other structures to quantify spatial dependence. In this paper, we introduce the Hausdorff-Gaussian process (HGP). The HGP relies on the Hausdorff distance, valid for both point and areal data, allowing for simultaneously accommodating geostatistical and areal models under the same modeling framework. We present the benefits of using the HGP as a random effect for Bayesian spatial generalized mixed-effects models and via a simulation study comparing the performance of the HGP to the most popular models for areal data. Finally, the HGP is applied to respiratory cancer data observed in Great Glasgow.
翻译:在分析是非数据时,可以建立更现实的模型,在分析是非数据时,考虑到空间依赖性。大多数是非数据模型使用相邻矩阵来评估数据的空间结构。这种方法有一些限制。值得注意的是,不同形状和大小的空间多边形体没有区别对待,而且很难根据这些模型计算出预测。此外,空间对称(当空间信息在不同空间级别时)变得难以处理。这些限制可以通过使用其他结构来制定模型来量化空间依赖性来规避。我们在本文件中介绍Husdorff-Gauussian进程(HGP),HGP依靠Hausdorff距离,既适用于点数据又适用于非数据,允许在同一模型框架内同时容纳地理统计模型和非模型。我们介绍了使用HGP作为Bayesian空间普遍混合效应模型的随机效应的好处,并通过模拟研究将HGP的性能与最流行的模型进行定量化分析,将HGP应用于大格拉斯观测的呼吸道癌数据。