Negative-free contrastive learning has attracted a lot of attention with simplicity and impressive performance for large-scale pretraining. But its disentanglement property remains unexplored. In this paper, we take different negative-free contrastive learning methods to study the disentanglement property of this genre of self-supervised methods empirically. We find the existing disentanglement metrics fail to make meaningful measurements for the high-dimensional representation model so we propose a new disentanglement metric based on Mutual Information between representation and data factors. With the proposed metric, we benchmark the disentanglement property of negative-free contrastive learning for the first time, on both popular synthetic datasets and a real-world dataset CelebA. Our study shows that the investigated methods can learn a well-disentangled subset of representation. We extend the study of the disentangled representation learning to high-dimensional representation space and negative-free contrastive learning for the first time. The implementation of the proposed metric is available at \url{https://github.com/noahcao/disentanglement_lib_med}.


翻译:以简单和令人印象深刻的性能进行大规模培训前的对比性反向学习已经引起人们的极大关注。 但是,它的分解属性仍未被探索。 在本文中,我们采用了不同的反面对比性学习方法,从经验上研究这种自我监督方法模式的分解属性。我们发现现有的分解度量未能对高维代表模型进行有意义的测量,因此我们基于相互信息提出一个新的分解度量。在拟议指标中,我们首次将负面零对比性学习的分解属性以流行合成数据集和真实世界数据集为基准。我们的研究显示,所调查的方法可以了解一个非常分解的代言组合。我们第一次将关于分解性代表学习的研究推广到高维代表性空间和负自由对比性学习。拟议指标的实施可以在\url{https://github.com/noahao/dientclementmentment_lib_med}上查阅。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月25日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员