This paper proposes a novel methodology for the online detection of changepoints in the factor structure of large matrix time series. Our approach is based on the well-known fact that, in the presence of a changepoint, a factor model can be rewritten as a model with a larger number of common factors. In turn, this entails that, in the presence of a changepoint, the number of spiked eigenvalues in the second moment matrix of the data increases. Based on this, we propose two families of procedures - one based on the fluctuations of partial sums, and one based on extreme value theory - to monitor whether the first non-spiked eigenvalue diverges after a point in time in the monitoring horizon, thereby indicating the presence of a changepoint. Our procedure is based only on rates; at each point in time, we randomise the estimated eigenvalue, thus obtaining a normally distributed sequence which is $i.i.d.$ with mean zero under the null of no break, whereas it diverges to positive infinity in the presence of a changepoint. We base our monitoring procedures on such sequence. Extensive simulation studies and empirical analysis justify the theory.


翻译:本文提出了在线检测大型矩阵时间序列要素结构变化点的新方法。我们的方法基于众所周知的事实,即当出现一个变化点时,可以将一个要素模型改写为具有更多共同因素的模型。反过来,这意味着,在出现变化点时,数据增长第二时刻矩阵中高涨的eigen值数量将随数据增长而变化。在此基础上,我们建议两个程序组----一个基于部分金额波动,一个基于极端价值理论----以监测在监测地平线上一个时间点后第一个非斯皮奇亚值差异,从而显示存在一个变化点。我们的程序仅以费率为基础;在每一个时间点上,我们随机测算估计的eigen值数量,从而获得正常分布的顺序,即$.i.d.d.,零在不中断状态下为零,而在出现变化点时则有正数。我们把我们的监测程序建立在这种顺序上,广泛的模拟研究和实证分析证明理论是正确的。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员