The great majority of languages in the world are considered under-resourced for the successful application of deep learning methods. In this work, we propose a meta-learning approach to document classification in limited-resource setting and demonstrate its effectiveness in two different settings: few-shot, cross-lingual adaptation to previously unseen languages; and multilingual joint training when limited target-language data is available during training. We conduct a systematic comparison of several meta-learning methods, investigate multiple settings in terms of data availability and show that meta-learning thrives in settings with a heterogeneous task distribution. We propose a simple, yet effective adjustment to existing meta-learning methods which allows for better and more stable learning, and set a new state of the art on several languages while performing on-par on others, using only a small amount of labeled data.


翻译:在这项工作中,我们提出了一种元学习方法,用于记录有限资源环境中的分类,并在两种不同环境中展示其有效性:在培训期间,对有限的目标语言数据进行少量的跨语言适应;在培训期间对有限的目标语言数据进行多语种联合培训。我们系统地比较了几种元学习方法,调查了数据可用性方面的多种环境,并表明元学习在任务分布不一的环境中蓬勃发展。我们建议对现有的元学习方法进行简单而有效的调整,以便更好和更稳定的学习,并在几种语言上设置新的艺术水平,同时只使用少量的标签数据,同时对其它语言进行平行演练。

0
下载
关闭预览

相关内容

【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
5+阅读 · 2019年11月22日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
4+阅读 · 2018年9月6日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员