The Cops and Robber game on geodesic spaces is a pursuit-evasion game with discrete steps which captures the behavior of the game played on graphs, as well as that of continuous pursuit-evasion games. One of the outstanding open problems about the game on graphs is to determine which graphs embeddable in a surface of genus $g$ have largest cop number. It is known that the cop number of genus $g$ graphs is $O(g)$ and that there are examples whose cop number is $\tilde\Omega(\sqrt{g}\,)$. The same phenomenon occurs when the game is played on geodesic surfaces. In this paper we obtain a surprising result about the game on a surface with constant curvature. It is shown that two cops have a strategy to come arbitrarily close to the robber, independently of the genus. We also discuss upper bounds on the number of cops needed to catch the robber. Our results generalize to higher-dimensional hyperbolic manifolds.
翻译:暂无翻译