Most language grounding models learn to select the referred object from a pool of object proposals provided by a pre-trained detector. This object proposal bottleneck is limiting because an utterance may refer to visual entities at various levels of granularity, such as the chair, the leg of a chair, or the tip of the front leg of a chair, which may be missed by the detector. Recently, MDETR introduced a language grounding model for 2D images that do not have such a box proposal bottleneck; instead of selecting objects from a proposal pool, it instead decodes the referenced object boxes directly from image and language features and achieves big leaps in performance. We propose a language grounding model for 3D scenes built on MDETR, which we call BEAUTY-DETR, from bottom-up and top-down DETR. BEAUTY-DETR attends on an additional object proposal pool computed bottom-up from a pre-trained detector. Yet it decodes referenced objects without selecting them from the pool. In this way, it uses powerful object detectors to help ground language without being restricted by their misses. Second, BEAUTY-DETR augments supervision from language grounding annotations by configuring object detection annotations as language prompts to be grounded in images. The proposed model sets a new state-of-the-art across popular 3D language grounding benchmarks with significant performance gains over previous 3D approaches (12.6% on SR3D, 11.6% on NR3D and 6.3% on ScanRefer). It outperforms a straightforward MDETR for the 3D point clouds method we implemented by 6.7% on SR3D, 11.8% on NR3D and 5% on the ScanRefer benchmark. When applied to language grounding in 2D images, it performs on par with MDETR. We ablate each of the design choices of the model and quantify their contribution to performance. Code and checkpoints are available at https://github.com/nickgkan/beauty_detr.
翻译:多数语言地面模型都学习从一个经过事先训练的探测器提供的物体建议库中选择推荐的对象。 这个对象建议瓶颈是限制的, 因为它的发音可能指不同颗粒层次的视觉实体, 如椅子、 椅子腿或椅子前腿, 可能被探测器忽略。 最近, MDETR 为2D 图像引入了一个语言地面模型, 没有这样的框建议瓶颈; 而不是从一个直接的显示器中选择对象, 而是直接从图像和语言特性中解码被引用的对象框, 并且实现性能上的飞跃。 我们建议为在MDETR中建起的3D 场景提供一个语言定位模型。 我们称之为BEAUTY- DETR, 从自下至上方的 DETR。 BEATY- DETR 参加一个额外的对象建议池, 从一个经过训练的探测器中计算底调的底调。 然而, 它在数据库中将对象引用, 而不是从数据库中选择。 在这种方式中, 它使用强大的物体监控器到地面语言, 但不受到误判。 第二, IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM IM 3 。