项目名称: 形变诱导下PET基纳米复合材料的界面对微结构演化的影响

项目编号: No.51303182

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 张献

作者单位: 中国科学院合肥物质科学研究院

项目金额: 25万元

中文摘要: 聚酯PET广泛应用于纤维、薄膜等领域,在其制品的制备过程中通常涉及到拉伸形变,而形变诱导下的微结构演化和最终性能直接相关。当不同类型的纳米材料添加到PET 中后会与基体形成复杂的界面结构,这将明显地影响材料最终的结构和性能。因此本项目分别以球形SiO2 和片层MMT 两种典型形貌填充的PET 基纳米复合材料为研究对象,从调控复合体系的界面结构出发,采用对界面相互作用和相变非常敏感的内耗技术原位研究复合样品形变诱导下的微结构演化,分析纳米填料与PET 基体之间的不同物理化学作用对形变过程中分子链段运动行为的影响特点,总结拉伸形变诱导下微结构演化随不同界面结构的变化规律,阐明纳米材料结构形貌-界面结构-形变动力学三者间的内在关联。本项目的研究有利于深入理解纳米复合材料微观结构与宏观力学行为的内在联系,并发展出一种研究聚合物纳米复合材料的新型手段,具有重要的意义。

中文关键词: 形变;弛豫;三元乙丙橡胶;次级Rouse转变;

英文摘要: PET polyester is widely used in the field of fibers, films, etc., and the preparation process relates generally to tensile deformation, which induced micro-structure evolution and final properties are directly related. When different types of nano-material are added to the PET substrate, complex interface structures will be formed and significantly affect the final performance of the material. So our project will choose two typical morphology nanoparticles, the spherical SiO2 and lamellar MMT-filled PET composites to form different interface structures, and investigate the deformation-induced microstructure evolution using in-situ internal friction technique, which is very sensitive to the interfacial interaction and phase transition of the composite sample.Then we will analysis the role of different interface structures on the molecular chain segments in the deformation process, and summarize the law of tensile deformation induced microstructure evolution with different interfaces structural changes. At the end, we will clarify inter-relate among of the nanomaterials structure, the interfacial interaction, deformation dynamics. The project will be in favor of in-depth understanding of the internal relations of nanocomposite structure and macroscopic mechanical behavior and promote the development of a new rese

英文关键词: tension;relaxation;EPDM;sub-Rouse transition;

成为VIP会员查看完整内容
0

相关内容

「图分类研究」最新2022综述
专知会员服务
97+阅读 · 2022年2月13日
《深度学习中神经注意力模型》综述论文
专知会员服务
112+阅读 · 2021年12月15日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
90+阅读 · 2021年4月18日
专知会员服务
144+阅读 · 2021年2月3日
最新《深度学习人体姿态估计》综述论文,26页pdf
专知会员服务
38+阅读 · 2020年12月29日
最新《深度学习人脸识别》综述论文,
专知会员服务
67+阅读 · 2020年8月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
234+阅读 · 2019年10月26日
「图分类研究」最新2022综述
专知
5+阅读 · 2022年2月13日
你被什么东西割过韭菜?
ZEALER订阅号
0+阅读 · 2021年12月26日
你在直播间里买过什么东西吗?
ZEALER订阅号
0+阅读 · 2021年12月20日
自动化所Science Advances发文揭示介观自组织反向传播机制助力AI学习
中国科学院自动化研究所
1+阅读 · 2021年10月21日
你一般用平板电脑做什么?
ZEALER订阅号
0+阅读 · 2021年10月17日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
自然语言处理(NLP)知识结构总结
AI100
51+阅读 · 2018年8月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2020年8月3日
Anomalous Instance Detection in Deep Learning: A Survey
Generative Adversarial Networks: A Survey and Taxonomy
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
小贴士
相关主题
相关VIP内容
「图分类研究」最新2022综述
专知会员服务
97+阅读 · 2022年2月13日
《深度学习中神经注意力模型》综述论文
专知会员服务
112+阅读 · 2021年12月15日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
90+阅读 · 2021年4月18日
专知会员服务
144+阅读 · 2021年2月3日
最新《深度学习人体姿态估计》综述论文,26页pdf
专知会员服务
38+阅读 · 2020年12月29日
最新《深度学习人脸识别》综述论文,
专知会员服务
67+阅读 · 2020年8月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
234+阅读 · 2019年10月26日
相关资讯
「图分类研究」最新2022综述
专知
5+阅读 · 2022年2月13日
你被什么东西割过韭菜?
ZEALER订阅号
0+阅读 · 2021年12月26日
你在直播间里买过什么东西吗?
ZEALER订阅号
0+阅读 · 2021年12月20日
自动化所Science Advances发文揭示介观自组织反向传播机制助力AI学习
中国科学院自动化研究所
1+阅读 · 2021年10月21日
你一般用平板电脑做什么?
ZEALER订阅号
0+阅读 · 2021年10月17日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
自然语言处理(NLP)知识结构总结
AI100
51+阅读 · 2018年8月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员