Deep-learning (DL)-based methods have shown significant promise in denoising myocardial perfusion SPECT images acquired at low dose. For clinical application of these methods, evaluation on clinical tasks is crucial. Typically, these methods are designed to minimize some fidelity-based criterion between the predicted denoised image and some reference normal-dose image. However, while promising, studies have shown that these methods may have limited impact on the performance of clinical tasks in SPECT. To address this issue, we use concepts from the literature on model observers and our understanding of the human visual system to propose a DL-based denoising approach designed to preserve observer-related information for detection tasks. The proposed method was objectively evaluated on the task of detecting perfusion defect in myocardial perfusion SPECT images using a retrospective study with anonymized clinical data. Our results demonstrate that the proposed method yields improved performance on this detection task compared to using low-dose images. The results show that by preserving task-specific information, DL may provide a mechanism to improve observer performance in low-dose myocardial perfusion SPECT.
翻译:深入学习(DL)方法显示,在将低剂量获得的心肌梗塞SPECT图像除尘方面有很大希望。对于临床应用这些方法,对临床任务进行评估至关重要。这些方法的设计一般是为了尽量减少预测的无酬图像和一些参考正常剂量图像之间的某种基于忠诚的标准。然而,虽然研究显示这些方法对SPECT临床任务的执行影响可能有限,但很有希望。为解决这一问题,我们利用关于模型观察者文献中的概念和我们对人类视觉系统的理解,提出一种基于DL的脱雾方法,旨在保存与观察者有关的信息,用于检测任务。拟议方法的目的是利用匿名临床数据的追溯研究,客观地评估在心肌梗塞SPECT图像中检测过重缺陷的任务。我们的结果表明,与使用低剂量图像相比,拟议方法提高了这一检测任务的业绩。结果显示,通过保存特定任务的信息,DL可以提供一种机制,改进低剂量心肌透视系统观察员在低剂量的SPECTECT中的性能。</s>