Since it is difficult to implement implicit schemes on the infinite-dimensional space, we aim to develop the explicit numerical method for approximating super-linear stochastic functional differential equations (SFDEs). Precisely, borrowing the truncation idea and linear interpolation we propose an explicit truncated Euler-Maruyama scheme for super-linear SFDEs, and obtain the boundedness and convergence in L^p. We also yield the convergence rate with 1/2 order. Different from some previous works, we release the global Lipschitz restriction on the diffusion coefficient. Furthermore, we reveal that numerical solutions preserve the underlying exponential stability. Moreover, we give several examples to support our theory.
翻译:由于难以在无限空间上实施隐含计划,我们的目标是为接近超线性随机功能差异方程式(SFDEs)制定明确的数字方法。 确切地说,借用短线理论和线性内插,我们为超线性SFDEs提出了一个明确短路的Euler-Maruyama计划,并在L ⁇ p 中获得了约束性和趋同性。我们还以1/2顺序得出了趋同率。与以前的一些作品不同,我们发布了全球Lipschitz对扩散系数的限制。此外,我们揭示了数字解决方案维护了潜在的指数稳定性。此外,我们举了几个例子来支持我们的理论。