We propose a Bayesian, noisy-input, spatial-temporal generalised additive model to examine regional relative sea-level (RSL) changes over time. The model provides probabilistic estimates of component drivers of regional RSL change via the combination of a univariate spline capturing a common regional signal over time, random slopes and intercepts capturing site-specific (local), long-term linear trends and a spatial-temporal spline capturing residual, non-linear, local variations. Proxy and instrumental records of RSL and corresponding measurement errors inform the model and a noisy-input method accounts for proxy temporal uncertainties. Results focus on the decomposition of RSL over the past 3000 years along the Atlantic coast of North America.
翻译:我们提议采用贝叶斯、噪音、热量、空间时空通用添加剂模型,以审查区域相对海平面的变化,该模型通过结合一个单象牙样条,捕捉一段时间的共同区域信号、随机斜坡和拦截捕捉特定地点(当地)、长期线性趋势以及空间时际样条捕捉剩余、非线性、局部变异。RSL的代用和辅助记录以及相应的测量错误,为模型和代理时间不确定性的噪音输入方法账户提供了区域RSL变化组成部分驱动因素的概率估计。结果侧重于过去3000年中RSL在北美大西洋沿岸的分解。