This paper introduces a measure of the diffusion of binary outcomes over a large, sparse network, when the diffusion is observed in two time periods. The measure captures the aggregated spillover effect of the state-switches in the initial period on their neighbors' outcomes in the second period. This paper introduces a causal network that captures the causal connections among the cross-sectional units over the two periods. It shows that when the researcher's observed network contains the causal network as a subgraph, the measure of diffusion is identified as a simple, spatio-temporal dependence measure of observed outcomes. When the observed network does not satisfy this condition, but the spillover effect is nonnegative, the spatio-temporal dependence measure serves as a lower bound for diffusion. Using this, a lower confidence bound for diffusion is proposed and its asymptotic validity is established. The Monte Carlo simulation studies demonstrate the finite sample stability of the inference across a range of network configurations. The paper applies the method to data on Indian villages to measure the diffusion of microfinancing decisions over households' social networks.


翻译:本文介绍了在一个庞大、分散的网络上传播二元结果的量度,当在两个时间段内观测到这种传播时,该测量捕捉了最初阶段国家开关对其邻国在第二个时期的结果产生的综合溢出效应。本文件介绍了一个因果网络,捕捉了两个时期跨部门单位之间的因果关系。它表明,当研究人员观测到的网络将因果关系网络作为一个子图时,扩散的量度被确定为观测到的结果的简单、瞬时依赖度量。当观测到的网络不能满足这一条件,但外溢效应是非负效应时,spatio-时间依赖度措施作为传播途径的制约较小。使用这一方法,提出了较低的传播信任度,并确定了传播的内在有效性。蒙特卡洛模拟研究表明,一系列网络配置的推论具有有限的样本稳定性。该文件将印度村庄的数据用于测量家庭社会网络上微额融资决定的传播情况。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
17+阅读 · 2020年9月6日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2021年2月28日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员