We study a system in which two-state Markov sources send status updates to a common receiver over a slotted ALOHA random access channel. We characterize the performance of the system in terms of state estimation entropy (SEE), which measures the uncertainty at the receiver about the sources' state. Two channel access strategies are considered, a reactive policy that depends on the source behavior and a random one that is independent of it. We prove that the considered policies can be studied using two different hidden Markov models (HMM) and show through density evolution (DE) analysis that the reactive strategy outperforms the random one in terms of SEE while the opposite is true for AoI. Furthermore, we characterize the probability of error in the state estimation at the receiver, considering a maximum a posteriori (MAP) estimator and a low-complexity (decode and hold) estimator. Our study provides useful insights on the design trade-offs that emerge when different performance metrics such as SEE, age or information (AoI) or state estimation error probability are adopted. Moreover, we show how the source statistics significantly impact the system performance.
翻译:我们研究的是两种状态的Markov 源向一个通用接收器发送状态更新的系统,使用一个有档期的 ALOHA 随机访问频道。 我们用状态估计的 entropy (SEE) 来描述该系统的性能,用来测量接收器对源状态的不确定性。 我们考虑的是两种频道访问策略,一种是取决于源的行为的被动政策,一种是独立于源的行为的随机政策。 我们的研究证明,可以使用两种不同的隐藏的 Markov 模型(HMM) 来研究所考虑的政策,并通过密度演化(DE) 分析来显示,反应策略在SEE 方面优于随机战略,而AoI 则相反。 此外,我们描述的是接收器在状态估计中的误差概率,考虑的是最高后方(MAP) 估计器和低兼容度(deco和持有) 估计器。 我们的研究提供了有用的见解,说明在采用诸如 SEEE、 年龄或信息(AoI) 或国家估计误差率等不同的性业绩指标时出现的设计取舍。 此外,我们展示了源统计如何对系统绩效产生重大影响的影响。</s>