The Sinc approximation applied to double-exponentially decaying functions is referred to as the DE-Sinc approximation. This approximation has notably been utilized for many applications because of its high efficiency. The Sinc approximation's mesh size and truncation numbers should be optimally selected to avail its full performance. However, the usual formula has only been ``near-optimally'' selected because the optimal formula between the two cannot be expressed in terms of elementary functions. In this study, we propose two improved formulas. The first one is based on the concept by an earlier research that produced an improved selection formula for the double-exponential formula. The formula performed better than the usual one, but was still not optimal. As a second formula, we introduce a new parameter to propose a truly optimal formula between the two. We give explicit error bounds for both formulas. Numerical comparisons show that the first formula gives a better error bound than the standard formula, and the second formula gives a far better error bound than both the standard and first formulas.
翻译:用于双重特效衰减函数的 Sinc 近似值被称为 DE- Sinc 近似值。 这个近似值明显用于许多应用, 因为它效率很高。 最理想地选择 Sinc 近似值的网状大小和短跑数, 以充分发挥其充分性能。 然而, 通常的公式只选择了“ 近似值”, 因为两者之间的最佳公式无法用基本功能表示。 我们在本研究中建议了两个改进的公式。 第一个公式基于一个概念, 早期的研究为双重特效公式提出了更好的选择公式。 该公式的表现比通常的要好, 但仍然不理想。 作为第二个公式, 我们引入了一个新的参数, 以在两种公式之间提出一个真正最佳的公式。 我们给出了两个公式之间的明确错误界限。 数值比较显示第一个公式的错误比标准公式的界限要好, 第二个公式的错误比标准公式和第一个公式都大得多。</s>