A trained neural network can be interpreted as a structural causal model (SCM) that provides the effect of changing input variables on the model's output. However, if training data contains both causal and correlational relationships, a model that optimizes prediction accuracy may not necessarily learn the true causal relationships between input and output variables. On the other hand, expert users often have prior knowledge of the causal relationship between certain input variables and output from domain knowledge. Therefore, we propose a regularization method that aligns the learned causal effects of a neural network with domain priors, including both direct and total causal effects. We show that this approach can generalize to different kinds of domain priors, including monotonicity of causal effect of an input variable on output or zero causal effect of a variable on output for purposes of fairness. Our experiments on twelve benchmark datasets show its utility in regularizing a neural network model to maintain desired causal effects, without compromising on accuracy. Importantly, we also show that a model thus trained is robust and gets improved accuracy on noisy inputs.


翻译:受过训练的神经网络可以被解释为一个结构性因果模型(SCM),该模型提供不断变化的输入变量对模型输出结果的影响。但是,如果培训数据包含因果关系和关联关系,那么优化预测准确性的模式不一定能了解输入变量和输出变量之间的真实因果关系。另一方面,专家用户通常事先了解某些输入变量与域知识输出之间的因果关系。因此,我们建议一种正规化方法,将神经网络的已知因果效应与领域前科(包括直接和总因果效应)相匹配。我们表明,这一方法可以概括不同种类的域前科,包括输入变量对产出的因果效应的单一性,或为公平目的对产出的零因果效应。我们在12个基准数据集上进行的实验表明,它有助于将神经网络模型正规化,以保持预期的因果效应,同时不损害准确性。我们还表明,所培训的模型是稳健的,在噪音投入方面提高了准确性。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月17日
Arxiv
0+阅读 · 2022年8月16日
Arxiv
12+阅读 · 2021年6月29日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
18+阅读 · 2020年7月13日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
13+阅读 · 2018年4月6日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关论文
Arxiv
0+阅读 · 2022年8月17日
Arxiv
0+阅读 · 2022年8月16日
Arxiv
12+阅读 · 2021年6月29日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
18+阅读 · 2020年7月13日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
13+阅读 · 2018年4月6日
Arxiv
10+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员