We present an end-to-end method for object detection and trajectory prediction utilizing multi-view representations of LiDAR returns and camera images. In this work, we recognize the strengths and weaknesses of different view representations, and we propose an efficient and generic fusing method that aggregates benefits from all views. Our model builds on a state-of-the-art Bird's-Eye View (BEV) network that fuses voxelized features from a sequence of historical LiDAR data as well as rasterized high-definition map to perform detection and prediction tasks. We extend this model with additional LiDAR Range-View (RV) features that use the raw LiDAR information in its native, non-quantized representation. The RV feature map is projected into BEV and fused with the BEV features computed from LiDAR and high-definition map. The fused features are then further processed to output the final detections and trajectories, within a single end-to-end trainable network. In addition, the RV fusion of LiDAR and camera is performed in a straightforward and computationally efficient manner using this framework. The proposed multi-view fusion approach improves the state-of-the-art on proprietary large-scale real-world data collected by a fleet of self-driving vehicles, as well as on the public nuScenes data set with minimal increases on the computational cost.


翻译:在这项工作中,我们认识到不同视图显示的优点和弱点,并提出了一种高效和通用的引信方法,从所有各种观点综合起来。我们的模型基于一个先进的鸟-眼视图(BEV)网络,这个网络将历史的LIDAR数据序列中的氧化性特征和高清晰度的高清晰度地图结合起来,用于执行探测和预测任务。此外,我们推广这一模型,增加LIDAR Rea-V(RV)特征,在原始的、非量化的表达中使用原始的LIDAR信息。RV特征图被投射到BEV,并与根据LIDAR和高清晰度地图计算的BEV特征相结合。随后,对连接特性进行进一步处理,在一个端对端的可培训网络中输出最后的探测和轨迹。此外,我们以直接和计算方式将原始的LIDAR和相机(RV)结合成更多的LIDAR(RV)特征,在原始的、非量化的表达式的显示中,以直接和计算方式,用这个框架改进了机队内部的大规模数据。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
“CVPR 2020 接受论文列表 1470篇论文都在这了
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
12+阅读 · 2021年6月21日
Monocular Plan View Networks for Autonomous Driving
Arxiv
6+阅读 · 2019年5月16日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员