Neural network modules conditioned by known priors can be effectively trained and combined to represent systems with nonlinear dynamics. This work explores a novel formulation for data-efficient learning of deep control-oriented nonlinear dynamical models by embedding local model structure and constraints. The proposed method consists of neural network blocks that represent input, state, and output dynamics with constraints placed on the network weights and system variables. For handling partially observable dynamical systems, we utilize a state observer neural network to estimate the states of the system's latent dynamics. We evaluate the performance of the proposed architecture and training methods on system identification tasks for three nonlinear systems: a continuous stirred tank reactor, a two tank interacting system, and an aerodynamics body. Models optimized with a few thousand system state observations accurately represent system dynamics in open loop simulation over thousands of time steps from a single set of initial conditions. Experimental results demonstrate an order of magnitude reduction in open-loop simulation mean squared error for our constrained, block-structured neural models when compared to traditional unstructured and unconstrained neural network models.
翻译:以已知前科为条件的神经网络模块可以进行有效培训和合并,以代表具有非线性动态的系统。 这项工作探索了一种新型方法,以便通过嵌入本地模型结构和制约因素,对深控导向的非线性动态模型进行数据高效学习。 提议的方法由神经网络块组成,这些神经网络块代表输入、状态和输出动态,对网络重量和系统变量有限制。 为了处理部分可见的动态系统, 我们使用国家观察神经网络来估计系统潜在动态的状态。 我们评估了三个非线性系统( 一个连续振动罐反应堆、 两个罐体互动系统和一个空气动力体)的拟议结构和培训方法的性能。 模型以几千个系统状态观测进行优化, 准确地代表了从一套单一的初始条件的数千个步骤进行开放式循环模拟的系统动态。 实验结果显示, 与传统的无结构的、 松动的神经网络模型相比, 我们的软性、 块结构型神经模型与传统的非线性神经性网络模型相比, 在开放的模拟中, 大规模减少系统模拟平均的平方错误的程度。