Multi-scale representations deeply learned via convolutional neural networks have shown tremendous importance for various pixel-level prediction problems. In this paper we present a novel approach that advances the state of the art on pixel-level prediction in a fundamental aspect, i.e. structured multi-scale features learning and fusion. In contrast to previous works directly considering multi-scale feature maps obtained from the inner layers of a primary CNN architecture, and simply fusing the features with weighted averaging or concatenation, we propose a probabilistic graph attention network structure based on a novel Attention-Gated Conditional Random Fields (AG-CRFs) model for learning and fusing multi-scale representations in a principled manner. In order to further improve the learning capacity of the network structure, we propose to exploit feature dependant conditional kernels within the deep probabilistic framework. Extensive experiments are conducted on four publicly available datasets (i.e. BSDS500, NYUD-V2, KITTI, and Pascal-Context) and on three challenging pixel-wise prediction problems involving both discrete and continuous labels (i.e. monocular depth estimation, object contour prediction, and semantic segmentation). Quantitative and qualitative results demonstrate the effectiveness of the proposed latent AG-CRF model and the overall probabilistic graph attention network with feature conditional kernels for structured feature learning and pixel-wise prediction.


翻译:在本文中,我们提出了一个新颖的方法,在基本方面,即结构化多尺度特征学习和聚合方面,提高像素级预测的先进水平,与以前直接考虑从主要CNN结构的内层获得的多尺度特征图的工程形成对比,仅仅以加权平均或混合的方式将特征叠叠起来,我们提议了一个概率图形关注网络结构,其基础是:一种新的关注-Gate定时随机字段(AG-CRFs)模型,用于学习和以原则方式使用多尺度表示;为了进一步提高网络结构的学习能力,我们提议在深度的概率性框架范围内利用基于地貌条件的多尺度特征图,对四个公开提供的数据集(即BSDS500模型、NYUD-V2、KITTI和Pascal-Context)进行广泛的实验,并针对三个具有挑战性的同质貌的预测问题,涉及离心和连续的预测结构性网络的特性、结构性、质量性指标性指标部分。

0
下载
关闭预览

相关内容

图注意力网络(Graph Attention Network,GAT),它通过注意力机制(Attention Mechanism)来对邻居节点做聚合操作,实现了对不同邻居权重的自适应分配,从而大大提高了图神经网络模型的表达能力。
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
专知会员服务
109+阅读 · 2020年3月12日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
专知会员服务
109+阅读 · 2020年3月12日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员