The recent advances of deep learning in both computer vision (CV) and natural language processing (NLP) provide us a new way of understanding semantics, by which we can deal with more challenging tasks such as automatic description generation from natural images. In this challenge, the encoder-decoder framework has achieved promising performance when a convolutional neural network (CNN) is used as image encoder and a recurrent neural network (RNN) as decoder. In this paper, we introduce a sequential guiding network that guides the decoder during word generation. The new model is an extension of the encoder-decoder framework with attention that has an additional guiding long short-term memory (LSTM) and can be trained in an end-to-end manner by using image/descriptions pairs. We validate our approach by conducting extensive experiments on a benchmark dataset, i.e., MS COCO Captions. The proposed model achieves significant improvement comparing to the other state-of-the-art deep learning models.


翻译:最近在计算机视觉和自然语言处理(NLP)方面的深层次学习进展为我们提供了一种新的理解语义学的方法,通过这种方式,我们可以处理更具有挑战性的任务,例如从自然图像自动描述生成。在这项挑战中,当结合神经神经网络(CNN)被用作图像编码器和经常神经网络(RNN)用作解码器时,编码器框架取得了有希望的绩效。在本文件中,我们引入了一个连续的指导网络,指导了文字生成过程中的解码器。新模式是编码器-解码框架的延伸,它具有额外的短期内存指导性,并且可以通过使用图像/描述配对进行端端培训。我们通过在基准数据集上进行广泛的实验,即MSCOCCaptions,验证了我们的方法。与其它最先进的深层学习模式相比,拟议模型取得了显著的改进。

5
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Image Captioning 36页最新综述, 161篇参考文献
专知
90+阅读 · 2018年10月23日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
论文 | CVPR2017有哪些值得读的Image Caption论文?
黑龙江大学自然语言处理实验室
16+阅读 · 2017年12月1日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年8月7日
Neural Image Captioning
Arxiv
5+阅读 · 2019年7月2日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
Image Captioning based on Deep Reinforcement Learning
Recurrent Fusion Network for Image Captioning
Arxiv
3+阅读 · 2018年7月31日
Arxiv
21+阅读 · 2018年5月23日
Arxiv
6+阅读 · 2018年4月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Image Captioning 36页最新综述, 161篇参考文献
专知
90+阅读 · 2018年10月23日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
论文 | CVPR2017有哪些值得读的Image Caption论文?
黑龙江大学自然语言处理实验室
16+阅读 · 2017年12月1日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员