We study the problem of online conditional distribution estimation with \emph{unbounded} label sets under local differential privacy. Let $\mathcal{F}$ be a distribution-valued function class with unbounded label set. We aim at estimating an \emph{unknown} function $f\in \mathcal{F}$ in an online fashion so that at time $t$ when the context $\boldsymbol{x}_t$ is provided we can generate an estimate of $f(\boldsymbol{x}_t)$ under KL-divergence knowing only a privatized version of the true labels sampling from $f(\boldsymbol{x}_t)$. The ultimate objective is to minimize the cumulative KL-risk of a finite horizon $T$. We show that under $(\epsilon,0)$-local differential privacy of the privatized labels, the KL-risk grows as $\tilde{\Theta}(\frac{1}{\epsilon}\sqrt{KT})$ upto poly-logarithmic factors where $K=|\mathcal{F}|$. This is in stark contrast to the $\tilde{\Theta}(\sqrt{T\log K})$ bound demonstrated by Wu et al. (2023a) for bounded label sets. As a byproduct, our results recover a nearly tight upper bound for the hypothesis selection problem of gopi et al. (2020) established only for the batch setting.
翻译:暂无翻译