We study the problem of robust multivariate polynomial regression: let $p\colon\mathbb{R}^n\to\mathbb{R}$ be an unknown $n$-variate polynomial of degree at most $d$ in each variable. We are given as input a set of random samples $(\mathbf{x}_i,y_i) \in [-1,1]^n \times \mathbb{R}$ that are noisy versions of $(\mathbf{x}_i,p(\mathbf{x}_i))$. More precisely, each $\mathbf{x}_i$ is sampled independently from some distribution $\chi$ on $[-1,1]^n$, and for each $i$ independently, $y_i$ is arbitrary (i.e., an outlier) with probability at most $\rho < 1/2$, and otherwise satisfies $|y_i-p(\mathbf{x}_i)|\leq\sigma$. The goal is to output a polynomial $\hat{p}$, of degree at most $d$ in each variable, within an $\ell_\infty$-distance of at most $O(\sigma)$ from $p$. Kane, Karmalkar, and Price [FOCS'17] solved this problem for $n=1$. We generalize their results to the $n$-variate setting, showing an algorithm that achieves a sample complexity of $O_n(d^n\log d)$, where the hidden constant depends on $n$, if $\chi$ is the $n$-dimensional Chebyshev distribution. The sample complexity is $O_n(d^{2n}\log d)$, if the samples are drawn from the uniform distribution instead. The approximation error is guaranteed to be at most $O(\sigma)$, and the run-time depends on $\log(1/\sigma)$. In the setting where each $\mathbf{x}_i$ and $y_i$ are known up to $N$ bits of precision, the run-time's dependence on $N$ is linear. We also show that our sample complexities are optimal in terms of $d^n$. Furthermore, we show that it is possible to have the run-time be independent of $1/\sigma$, at the cost of a higher sample complexity.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年4月26日
Arxiv
0+阅读 · 2024年4月26日
Arxiv
0+阅读 · 2024年4月25日
Arxiv
0+阅读 · 2024年4月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年4月26日
Arxiv
0+阅读 · 2024年4月26日
Arxiv
0+阅读 · 2024年4月25日
Arxiv
0+阅读 · 2024年4月25日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员