Given a collection of vertex-aligned networks and an additional label-shuffled network, we propose procedures for leveraging the signal in the vertex-aligned collection to recover the labels of the shuffled network. We consider matching the shuffled network to averages of the networks in the vertex-aligned collection at different levels of granularity. We demonstrate both in theory and practice that if the graphs come from different network classes, then clustering the networks into classes followed by matching the new graph to cluster-averages can yield higher fidelity matching performance than matching to the global average graph. Moreover, by minimizing the graph matching objective function with respect to each cluster average, this approach simultaneously classifies and recovers the vertex labels for the shuffled graph. These theoretical developments are further reinforced via an illuminating real data experiment matching human connectomes.
翻译:给定一组顶点对齐的网络和一个额外的标签混淆的网络,我们提出了利用顶点对齐集合中的信号来恢复混淆网络的标签的方法。我们考虑将混淆网络与在不同粒度上的顶点对齐集合中的平均网络匹配。我们在理论和实践中展示,如果这些图来自不同的网络类别,则将这些网络聚类成类别,然后将新图与聚类平均值匹配,可以比将其与全局平均图匹配获得更高的配对性能。此外,通过最小化图匹配目标函数,相对于每个聚类平均值,这种方法同时分类和恢复混淆图的顶点标签。这些理论发展通过一个有启示性的真实数据实验匹配人类连接体得到进一步加强。