An interpretable system for complex, open-domain reasoning needs an interpretable meaning representation. Natural language is an excellent candidate -- it is both extremely expressive and easy for humans to understand. However, manipulating natural language statements in logically consistent ways is hard. Models have to be precise, yet robust enough to handle variation in how information is expressed. In this paper, we describe ParaPattern, a method for building models to generate logical transformations of diverse natural language inputs without direct human supervision. We use a BART-based model (Lewis et al., 2020) to generate the result of applying a particular logical operation to one or more premise statements. Crucially, we have a largely automated pipeline for scraping and constructing suitable training examples from Wikipedia, which are then paraphrased to give our models the ability to handle lexical variation. We evaluate our models using targeted contrast sets as well as out-of-domain sentence compositions from the QASC dataset (Khot et al., 2020). Our results demonstrate that our operation models are both accurate and flexible.
翻译:复杂的、开放的推理系统需要一种解释性的、可解释的表达方式。自然语言是一个极好的候选语言 -- -- 既非常清晰,又容易让人类理解。然而,以逻辑一致的方式操纵自然语言的语句是很困难的。模型必须精确,但足够坚固,足以处理信息表达方式的差异。在本文中,我们描述了ParaPapater,这是在没有直接的人类监督的情况下建立各种自然语言投入的逻辑转换模型的一种方法。我们使用基于BART的模型(Lewis等人,2020年)来产生对一种或多种前提语句应用特定逻辑操作的结果。关键是,我们有一个基本上自动化的管道,用于从维基百科筛选和构建合适的培训范例,然后将这种模式拼写成能给我们的模型处理词汇变异的能力。我们用有针对性的对比组合和QASC数据集的外语句构成来评估我们的模型(Khot等人,2020年)。我们的结果显示,我们的操作模型既准确又灵活。