To build agents that can collaborate effectively with others, recent research has trained artificial agents to communicate with each other in Lewis-style referential games. However, this often leads to successful but uninterpretable communication. We argue that this is due to the game objective: communicating about a single object in a shared visual context is prone to overfitting and does not encourage language useful beyond concrete reference. In contrast, human language conveys a rich variety of abstract ideas. To promote such skills, we propose games that require communicating generalizations over sets of objects representing abstract visual concepts, optionally with separate contexts for each agent. We find that these games greatly improve systematicity and interpretability of the learned languages, according to several metrics in the literature. Finally, we propose a method for identifying logical operations embedded in the emergent languages by learning an approximate compositional reconstruction of the language.


翻译:为了建立能够与他人有效合作的代理机构,最近的研究培训了人工代理机构,使其在刘易斯式优惠游戏中相互沟通。然而,这往往导致成功但无法解释的沟通。我们争辩说,这是因为游戏的目的:在共同视觉背景下就单一对象进行沟通容易过度适应,而且不会鼓励除具体参考外有用的语言。相反,人文传达了丰富的抽象思想。为了推广这种技能,我们建议游戏,要求对代表抽象视觉概念的成套物体进行通俗交流,每个代理机构可选择不同的环境。我们发现,根据文献中的若干衡量标准,这些游戏极大地改进了所学语言的系统性和可解释性。最后,我们建议了一种方法,通过学习语言的大致构成重建,确定新语言中包含的逻辑操作。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Emergent Discrete Communication in Semantic Spaces
Arxiv
0+阅读 · 2021年8月5日
Arxiv
24+阅读 · 2021年6月25日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Arxiv
3+阅读 · 2018年4月11日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员