Monitoring random profiles over time is used to assess whether the system of interest, generating the profiles, is operating under desired conditions at any time-point. In practice, accurate detection of a change-point within a sequence of responses that exhibit a functional relationship with multiple explanatory variables is an important goal for effectively monitoring such profiles. We present a nonparametric method utilizing ensembles of regression trees and random forests to model the functional relationship along with associated Kolmogorov-Smirnov statistic to monitor profile behavior. Through a simulation study considering multiple factors, we demonstrate that our method offers strong performance and competitive detection capability when compared to existing methods.
翻译:暂无翻译