Improving robotic navigation is critical for extending exploration range and enhancing operational efficiency. Vision-based navigation relying on traditional CCD or CMOS cameras faces major challenges when complex illumination conditions are paired with motion, limiting the range and accessibility of mobile planetary robots. In this study, we propose a novel approach to planetary navigation that leverages the unique imaging capabilities of Single-Photon Avalanche Diode (SPAD) cameras. We present the first comprehensive evaluation of single-photon imaging as an alternative passive sensing technology for robotic exploration missions targeting perceptually challenging locations, with a special emphasis on high-latitude lunar regions. We detail the operating principles and performance characteristics of SPAD cameras, assess their advantages and limitations in addressing key perception challenges of upcoming exploration missions to the Moon, and benchmark their performance under representative illumination conditions.
翻译:暂无翻译